Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

  • Pedro O. S. Vaz de Melo
  • Leman Akoglu
  • Christos Faloutsos
  • Antonio A. F. Loureiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6323)

Abstract

How long are the phone calls of mobile users? What are the chances of a call to end, given its current duration? Here we answer these questions by studying the call duration distributions (CDDs) of individual users in large mobile networks. We analyzed a large, real network of 3.1 million users and more than one billion phone call records from a private mobile phone company of a large city, spanning 0.1 TB. Our first contribution is the TLAC distribution to fit the CDD of each user; TLAC is the truncated version of so-called log-logistic distribution, a skewed, power-law-like distribution. We show that the TLAC is an excellent fit for the overwhelming majority of our users (more than 96% of them), much better than exponential or lognormal. Our second contribution is the MetaDist to model the collective behavior of the users given their CDDs. We show that the MetaDist distribution accurately and succinctly describes the calls duration behavior of users in large mobile networks. All of our methods are fast, and scale linearly with the number of customers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, S.: Log-logistic regression models for survival data. Journal of the Royal Statistical Society. Series C (Applied Statistics) 32(2), 165–171 (1983)Google Scholar
  2. 2.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Review 51(4), 661 (2009), http://dx.doi.org/10.1137/070710111 MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cortes, C., Pregibon, D., Volinsky, C.: Communities of interest. In: Hoffmann, F., Hand, D.J., Adams, N.M., Fisher, D.H., Guimarães, G. (eds.) IDA 2001. LNCS, vol. 2189, pp. 105–114. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Du, N., Faloutsos, C., Wang, B., Akoglu, L.: Large human communication networks: patterns and a utility-driven generator. In: KDD ’09: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 269–278. ACM, New York (2009)CrossRefGoogle Scholar
  5. 5.
    Fisk, P.R.: The graduation of income distributions. Econometrica 29(2), 171–185 (1961)MATHCrossRefGoogle Scholar
  6. 6.
    Gokhale, S.S., Trivedi, K.S.: Log-logistic software reliability growth model. In: HASE ’98: The 3rd IEEE International Symposium on High-Assurance Systems Engineering, pp. 34–41. IEEE Computer Society Press, Washington (1998)CrossRefGoogle Scholar
  7. 7.
    Guo, J., Liu, F., Zhu, Z.: Estimate the call duration distribution parameters in gsm system based on k-l divergence method. In: International Conference on Wireless Communications, Networking and Mobile Computing, WiCom 2007, pp. 2988–2991 (September 2007)Google Scholar
  8. 8.
    Hidalgo, C.A., Rodriguez-Sickert, C.: The dynamics of a mobile phone network. Physica A: Statistical Mechanics and its Applications 387(12), 3017–3024 (2008)CrossRefGoogle Scholar
  9. 9.
    Hill, S., Nagle, A.: Social network signatures: A framework for re-identification in networked data and experimental results. In: CASON ’09: Proceedings of the 2009 International Conference on Computational Aspects of Social Networks, pp. 88–97. IEEE Computer Society, Washington (2009)CrossRefGoogle Scholar
  10. 10.
    Hill, S., Provost, F.J., Volinsky, C.: Learning and inference in massive social networks. In: Frasconi, P., Kersting, K., Tsuda, K. (eds.) MLG (2007)Google Scholar
  11. 11.
    Lawless, J.F.: Statistical Models and Methods for Lifetime Data (Wiley Series in Probability & Mathematical Statistics). John Wiley & Sons, Chichester (1982)Google Scholar
  12. 12.
    Mahmood, T.: Survival of newly founded businesses: A log-logistic model approach. JournalSmall Business Economics 14(3), 223–237 (2000)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Massey, F.J.: The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association 46(253), 68–78 (1951), http://dx.doi.org/10.2307/2280095 MATHCrossRefGoogle Scholar
  14. 14.
    Ahmad, M.I., Sinclair, C.D., Werritty, A.: Log-logistic flood frequency analysis. Journal of Hydrology 98, 205–224 (1988)CrossRefGoogle Scholar
  15. 15.
    Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: CIKM ’06: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 435–444. ACM, New York (2006)CrossRefGoogle Scholar
  16. 16.
    Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences 104(18), 7332–7336 (2007)CrossRefGoogle Scholar
  17. 17.
    Onnela, J.P., Saramaki, J., Hyvonen, J., Szabo, G., de Menezes, M.A., Kaski, K., Barabasi, A.L., Kertesz, J.: Analysis of a large-scale weighted network of one-to-one human communication. New Journal of Physics 9(6), 179 (2007)CrossRefGoogle Scholar
  18. 18.
    Seshadri, M., Machiraju, S., Sridharan, A., Bolot, J., Faloutsos, C., Leskove, J.: Mobile call graphs: beyond power-law and lognormal distributions. In: KDD ’08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 596–604. ACM, New York (2008)CrossRefGoogle Scholar
  19. 19.
    Tejinder, S., Randhawa, S.H.: Network Management in Wired and Wireless Networks. Springer, New York (2003)Google Scholar
  20. 20.
    Willkomm, D., Machiraju, S., Bolot, J., Wolisz, A.: Primary users in cellular networks: A large-scale measurement study. In: 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2008, pp. 1–11 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pedro O. S. Vaz de Melo
    • 1
    • 4
  • Leman Akoglu
    • 2
    • 3
    • 4
  • Christos Faloutsos
    • 2
    • 3
    • 4
  • Antonio A. F. Loureiro
    • 1
  1. 1.Universidade Federal de Minas Gerais 
  2. 2.Carnegie Mellon University 
  3. 3.SCS, School of Computer Science 
  4. 4.iLab, Heinz College 

Personalised recommendations