Advertisement

Saturated LTSs for Adhesive Rewriting Systems

  • Filippo Bonchi
  • Fabio Gadducci
  • Giacoma Valentina Monreale
  • Ugo Montanari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6372)

Abstract

G-Reactive Systems (GRSs) are a framework for the derivation of labelled transition systems (LTSs) from a set of unlabelled rules. A label for a transition from A to B is a context C[ − ] such that C[A] may perform a reaction and reach B. If either all contexts, or just the ”minimal” ones, are considered, the resulting LTS is called saturated (GIPO, respectively). The borrowed contexts (BCs) technique addresses the issue in the setting of the DPO approach. Indeed, from an adhesive rewriting system (ARS) a GRS can be defined such that DPO derivations correspond to reactions, and BC derivations to transitions of the GIPO LTS. This paper extends the BCs technique in order to derive saturated LTSs for ARSs, applying it to capture bisimilarity for asynchronous calculi.

Keywords

Label Transition System Reduction Rule Process Calculus Reduction Semantic Model Refactoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amadio, R., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous π-calculus. Theoretical Computer Science 195(2), 291–324 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bénabou, J.: Introduction to bicategories. In: Midwest Category Seminar I. LNM, vol. 47, pp. 1–77. Springer, Heidelberg (1967)CrossRefGoogle Scholar
  3. 3.
    Birkedal, L., Debois, S., Hildebrandt, T.: On the construction of sorted reactive systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 218–232. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bonchi, F.: Abstract Semantics by Observable Contexts. Ph.D. thesis, Department of Informatics, University of Pisa (2008)Google Scholar
  5. 5.
    Bonchi, F., Gadducci, F., König, B.: Synthesising CCS bisimulation using graph rewriting. Information and Computation 207(1), 14–40 (2009)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Labelled transitions for mobile ambients (as synthesized via a graphical encoding). In: Hildebrandt, T., Gorla, D. (eds.) EXPRESS 2008. ENTCS, vol. 242(1), pp. 73–98. Elsevier, Amsterdam (2009)Google Scholar
  7. 7.
    Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: LICS 2006, pp. 69–80. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  9. 9.
    Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: On the use of behavioural equivalences for web services’ development. Fundamenta Informaticae 89(4), 479–510 (2008)MATHMathSciNetGoogle Scholar
  10. 10.
    Cardelli, L., Gordon, A.: Mobile ambients. Theoretical Computer Science 240(1), 177–213 (2000)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cardelli, L.: Brane calculi. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph rewriting with borrowed contexts. Mathematical Structures in Computer Science 16(6), 1133–1163 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gadducci, F.: Graph rewriting for the π-calculus. Mathematical Structures in Computer Science 17(3), 407–437 (2007)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Gadducci, F., Heckel, R.: An inductive view of graph transformation. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 219–233. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Gadducci, F., Montanari, U.: A concurrent graph semantics for mobile ambients. In: Brookes, S., Mislove, M. (eds.) MFPS 2001. ENTCS, vol. 45. Elsevier, Amsterdam (2001)Google Scholar
  16. 16.
    Gianantonio, P.D., Honsell, F., Lenisa, M.: RPO, second-order contexts, and lambda-calculus. Logical Methods in Computer Science 5(3) (2009)Google Scholar
  17. 17.
    Grohmann, D., Miculan, M.: Reactive systems over directed bigraphs. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 380–394. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Grohmann, D., Miculan, M.: Deriving barbed bisimulations for bigraphical reactive systems. In: Corradini, A., Tuosto, E. (eds.) ICGT 2008 - Doctoral Symposium. Electronic Communications of the EASST, vol. 16. EASST (2009)Google Scholar
  19. 19.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundamenta Informaticae 26(3/4), 287–313 (1996)MATHMathSciNetGoogle Scholar
  20. 20.
    Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Computer Science 151(2), 437–486 (1995)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. Theoretical Informatics and Applications 39(3), 511–545 (2005)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. Journal of the ACM 52(6), 961–1023 (2005)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)Google Scholar
  25. 25.
    Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    OWL-S Coalition: OWL-S for services, www.ai.sri.com/daml/services/owl-s/
  27. 27.
    Rangel, G., König, B., Ehrig, H.: Deriving bisimulation congruences in the presence of negative application conditions. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 413–427. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preservation in model refactoring using DPO transformations with borrowed contexts. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Rathke, J., Sassone, V., Sobociński, P.: Semantic barbs and biorthogonality. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Rathke, J., Sobociński, P.: Deriving structural labelled transitions for mobile ambients. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 462–476. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Sassone, V., Sobocinski, P.: Deriving bisimulation congruences using 2-categories. Nordic Journal of Computing 10(2), 163–183 (2003)MATHMathSciNetGoogle Scholar
  32. 32.
    Sassone, V., Sobociński, P.: Reactive systems over cospans. In: LICS 2005, pp. 311–320. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  33. 33.
    Sobociński, P.: Deriving bisimulation congruences from reduction systems. Ph.D. thesis, BRICS, Department of Computer Science, University of Aaurhus (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Filippo Bonchi
    • 1
  • Fabio Gadducci
    • 2
  • Giacoma Valentina Monreale
    • 2
  • Ugo Montanari
    • 2
  1. 1.INRIA Saclay and LIXÉcole Polytechnique 
  2. 2.Dipartimento di InformaticaUniversità di Pisa 

Personalised recommendations