A New Type of Behaviour-Preserving Transition Insertions in Unfolding Prefixes

  • Victor Khomenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6372)


A new kind of behaviour-preserving insertions of new transitions in Petri nets is proposed, and a method for computing such insertions using a complete unfolding prefix of the Petri net is developed. Moreover, as several transformations often have to be applied one after the other, the developed theory allows one to avoid (expensive) re-unfolding after each transformation, and instead use local modifications on the existing complete prefix to obtain a complete prefix of the modified net.


Transition insertions transformations Petri net unfoldings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chu, T.A.: Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications. Ph.D. thesis, Lab. for Comp. Sci. MIT (1987)Google Scholar
  2. 2.
    Cohn, P.: Universal Algebra, 2nd edn. Reidel, Dordrecht (1981)MATHGoogle Scholar
  3. 3.
    Engelfriet, J.: Branching processes of Petri nets. Acta Inf. 28, 575–591 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. FMSD 20(3), 285–310 (2002)MATHGoogle Scholar
  5. 5.
    Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. Ph.D. thesis, School of Comp. Sci., Newcastle Univ. (2003)Google Scholar
  6. 6.
    Khomenko, V.: Behaviour-preserving transition insertions in unfolding prefixes. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 204–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Khomenko, V.: Efficient automatic resolution of encoding conflicts using STG unfoldings. IEEE Trans. VLSI Syst. 17(7), 855–868 (2009); Special section on asynchronous circuits and systems Google Scholar
  8. 8.
    Khomenko, V.: A new type of behaviour-preserving transition insertions in unfolding prefixes. Tech. Rep. CS-TR-1189, School of Comp. Sci., Newcastle Univ. (2010),
  9. 9.
    Khomenko, V., Koutny, M., Vogler, V.: Canonical prefixes of Petri net unfoldings. Acta Inf. 40(2), 95–118 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Murata, T.: Petri nets: Properties, analysis and applications. Proc. of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  11. 11.
    Rosenblum, L., Yakovlev, A.: Signal graphs: from self-timed to timed ones. In: Proc. Workshop on Timed Petri Nets, pp. 199–206. IEEE Comp. Soc. Press, Los Alamitos (1985)Google Scholar
  12. 12.
    Vanbekbergen, P., Catthoor, F., Goossens, G., De Man, H.: Optimized synthesis of asynchronous control circuits from graph-theoretic specifications. In: Proc. ICCAD 1990, pp. 184–187. IEEE Comp. Soc. Press, Los Alamitos (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Victor Khomenko
    • 1
  1. 1.School of Computing ScienceNewcastle UniversityUK

Personalised recommendations