Advertisement

A Dynamic Logic for Termgraph Rewriting

  • Philippe Balbiani
  • Rachid Echahed
  • Andreas Herzig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6372)

Abstract

We propose a dynamic logic tailored to describe graph transformations and discuss some of its properties. We focus on a particular class of graphs called termgraphs. They are first-order terms augmented with sharing and cycles. Termgraphs allow one to describe classical data-structures (possibly with pointers) such as doubly-linked lists, circular lists etc. We show how the proposed logic can faithfully describe (i) termgraphs as well as (ii) the application of a termgraph rewrite rule (i.e. matching and replacement) and (iii) the computation of normal forms with respect to a given rewrite system. We also show how the proposed logic, which is more expressive than propositional dynamic logic, can be used to specify shapes of classical data-structures (e.g. binary trees, circular lists etc.).

Keywords

Elementary Action Graph Transformation Dynamic Logic Edge Label Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 307–321. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic, vol. 3. Elsevier Science, Amsterdam (2006)Google Scholar
  3. 3.
    Aucher, G., Balbiani, P., Fariñas Del Cerro, L., Herzig, A.: Global and local graph modifiers. In: Electronic Notes in Theoretical Computer Science (ENTCS), Special issue Proceedings of the 5th Workshop on Methods for Modalities (M4M5 2007), vol. 231, pp. 293–307 (2009)Google Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Barendregt, H., van Eekelen, M., Glauert, J., Kenneway, R., Plasmeijer, M.J., Sleep, M.: Term graph rewriting. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)Google Scholar
  6. 6.
    Caferra, R., Echahed, R., Peltier, N.: A term-graph clausal logic: Completeness and incompleteness results. Journal of Applied Non-classical Logics 18, 373–411 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  8. 8.
    Echahed, R.: Inductively sequential term-graph rewrite systems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 84–98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  10. 10.
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformations. Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  11. 11.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  12. 12.
    Plump, D.: Term graph rewriting. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 3–61. World Scientific, Singapore (1999)Google Scholar
  13. 13.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  14. 14.
    Tiuryn, J.: Fixed-points and algebras with infinitely long expression, part 1, regular algebras. Fundamenta Informaticae 2, 103–127 (1978)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Tiuryn, J.: Fixed-points and algebras with infinitely long expression, part 2, μ-clones of regular algebras. Fundamenta Informaticae 2(3), 317–335 (1979)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Philippe Balbiani
    • 1
  • Rachid Echahed
    • 2
  • Andreas Herzig
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (IRIT)Université de Toulouse, CNRSToulouse Cedex 9France
  2. 2.Laboratoire LIGBât IMAG CGrenoble CedexFrance

Personalised recommendations