Graph Transformation for Domain-Specific Discrete Event Time Simulation

  • Juan de Lara
  • Esther Guerra
  • Artur Boronat
  • Reiko Heckel
  • Paolo Torrini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6372)


Graph transformation is being increasingly used to express the semantics of domain specific visual languages since its graphical nature makes rules intuitive. However, many application domains require an explicit handling of time in order to represent accurately the behaviour of the real system and to obtain useful simulation metrics.

Inspired by the vast knowledge and experience accumulated by the discrete event simulation community, we propose a novel way of adding explicit time to graph transformation rules. In particular, we take the event scheduling discrete simulation world view and incorporate to the rules the ability of scheduling the occurrence of other rules in the future. Hence, our work combines standard, efficient techniques for discrete event simulation (based on the handling of a future event set) and the intuitive, visual nature of graph transformation. Moreover, we show how our formalism can be used to give semantics to other timed approaches.


Graph Transformation Concrete Syntax Event Graph Stochastic Delay Graph Transformation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boronat, A., Ölveczky, P.C.: Formal real-time model transformations in MOMENT2. In: Rosenblum, D.S., Taentzer, G. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 6013, pp. 29–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems, 2nd edn. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  3. 3.
    de Lara, J.: Meta-modelling and graph transformation for the simulation of systems. Bulletin of the EATCS 81, 180–194 (2003)Google Scholar
  4. 4.
    de Lara, J., Vangheluwe, H.: Automating the transformation-based analysis of visual languages. Formal Aspects of Computing 22(3-4), 297–326 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  6. 6.
    Fishman, G.S.: Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  7. 7.
    Gönczy, L., Kovács, M., Varró, D.: Modeling and verification of reliable messaging by graph transformation systems. ENTCS 175(4), 37–50 (2007)Google Scholar
  8. 8.
    Gyapay, S., Varró, D., Heckel, R.: Graph transformation with time. Fundam. Inform. 58(1), 1–22 (2003)zbMATHGoogle Scholar
  9. 9.
    Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fundam. Inform. 74(1), 63–84 (2006)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets. John Wiley & Sons, Chichester (1995)zbMATHGoogle Scholar
  11. 11.
    Mathaikutty, D.A., Patel, H.D., Shukla, S.K., Jantsch, A.: SML-Sys: a functional framework with multiple models of computation for modeling heterogeneous system. Des. Autom. Embed. Syst. 12, 1–30 (2008)CrossRefGoogle Scholar
  12. 12.
    Naeem, M., Heckel, R., Orejas, F., Hermann, F.: Incremental service composition based on partial matching of visual contracts. In: Rosenblum, D.S., Taentzer, G. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol. 6013, pp. 123–138. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-dependent behavior of DSLs. In: VL/HCC 2009, pp. 51–55. IEEE, Los Alamitos (2009)Google Scholar
  14. 14.
    Schruben, L.: Simulation modeling with event graphs. Commun. ACM 26(11), 957–963 (1983)CrossRefGoogle Scholar
  15. 15.
    Strobl, T., Minas, M.: Specifying and generating editing environments for interactive animated visual models. In: GT-VMT 2010 (2010)Google Scholar
  16. 16.
    Syriani, E., Vangheluwe, H.: Programmed graph rewriting with DEVS. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 136–151. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Torrini, P., Heckel, R., Rath, I.: Stochastic graph transformation with regions. In: GT-VMT 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan de Lara
    • 1
  • Esther Guerra
    • 2
  • Artur Boronat
    • 3
  • Reiko Heckel
    • 3
  • Paolo Torrini
    • 3
  1. 1.Universidad Autónoma de Madrid(Spain)
  2. 2.Universidad Carlos III de Madrid(Spain)
  3. 3.University of Leicester(UK)

Personalised recommendations