Analyzing the AIR Language: A Semantic Web (Production) Rule Language

  • Ankesh Khandelwal
  • Jie Bao
  • Lalana Kagal
  • Ian Jacobi
  • Li Ding
  • James Hendler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6333)


The Accountability In RDF (AIR) language is an N3-based, Semantic Web production rule language that supports nested activation of rules, negation, closed world reasoning, scoped contextualized reasoning, and explanation of inferred facts. Each AIR rule has unique identifier (typically an HTTP URI) that supports reuse of rule. In this paper we analyze the semantics of AIR language by: i) giving the declarative semantics that support the reasoning algorithm, ii) providing complexity of AIR inference; and iii) evaluating the expressiveness of language by encoding Logic Programs of different expressivities in AIR.


Logic Program Logic Programming Predicate Symbol Graph Pattern Active Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angele, J., Moench, E., Staab, S., Wenke, D.: Ontology-based query and answering in chemistry: Ontonova @ project halo. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 913–928. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Apt, K.R.: Logic programming. In: Handbook of Theoretical Computer Science, Formal Models and Sematics, vol. B (1990)Google Scholar
  3. 3.
    Bassiliades, N., Antoniou, G., Governatori, G.: Proof explanation in the dr-device system. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 249–258. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Berners-lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3logic: A logical framework for the world wide web. Theory Pract. Log. Program. 8(3) (2008)Google Scholar
  5. 5.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. In: IEEE Conference on Computational Complexity (1997)Google Scholar
  6. 6.
    Forgy, C.: RETE: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1) (September 1982)Google Scholar
  7. 7.
    Forgy, C.L.: OPS5 users manual. In: Technical Report CMU-CS-81-135, Department of Computer Science, Carnegie-Mellon University (1981)Google Scholar
  8. 8.
    Grosof, B.N.: SILK: Higher level rules with defaults and semantic scalability. In: Proceedings of the 3rd International Conference on Web Reasoning and Rule Systems, RR 2009 (2009)Google Scholar
  9. 9.
    Grosof, B.N., Gandhe, M.D., Finin, T.W.: Sweetjess: Inferencing in situated courteous ruleml via translation to and from jess rules. In: Proceedings of the ISWC ’02 International Workshop on Rule Markup Languages for Business Rules on the Semantic Web (2003)Google Scholar
  10. 10.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and ruleml. Technical report, W3C (2004)Google Scholar
  11. 11.
    Kagal, L., Hanson, C., Weitzner, D.: Using dependency tracking to provide explanations for policy management. In: IEEE International Workshop on Policies for Distributed Systems and Networks (2008)Google Scholar
  12. 12.
    Kagal, L., Jacobi, I., Khandelwal, A.: Gasping for AIR - why we need linked rules and justications on the semantic web. In: Under review at the International Semantic Web Conference, ISWC 2010 (2010)Google Scholar
  13. 13.
    Khandelwal, A., Bao, J., Kagal, L., Jacobi, I., Ding, L., Hendler, J.: Analyzing the AIR language: A semantic web rule language. Technical Report, Department of Computer Science, Rensselaer Polytechnic Institute (2010)Google Scholar
  14. 14.
    Kifer, M.: Rule interchange format: The framework. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 1–11. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Liang, S., Fodor, P., Wan, H., Kifer, M.: Openrulebench: an analysis of the performance of rule engines. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009 (2009)Google Scholar
  16. 16.
    Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th International Conference on World Wide Web, WWW 2007 (2007)Google Scholar
  17. 17.
    Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical report, W3C (2006)Google Scholar
  19. 19.
    Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs. In: Foundations of Deductive Databases and Logic Programming (1988)Google Scholar
  20. 20.
    Schenk, S., Staab, S.: Networked graphs: a declarative mechanism for SPARQL rules, SPARQL views and RDF data integration on the web. In: Proceeding of the 17th International Conference on World Wide Web, WWW 2008 (2008)Google Scholar
  21. 21.
    Schor, M.I., Daly, T., Lee, H.S., Tibbitts, B.: Advances in RETE pattern matching. In: AAAI (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ankesh Khandelwal
    • 1
  • Jie Bao
    • 1
  • Lalana Kagal
    • 2
  • Ian Jacobi
    • 2
  • Li Ding
    • 1
  • James Hendler
    • 1
  1. 1.Rensselaer Polytechnic InstituteTroy
  2. 2.Massachusetts Institute of TechnologyCambridge

Personalised recommendations