KWilt: A Semantic Patchwork for Flexible Access to Heterogeneous Knowledge

  • Klara Weiand
  • Steffen Hausmann
  • Tim Furche
  • François Bry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6333)


Semantic wikis and other modern knowledge management systems deviate from traditional knowledge bases in that information ranges from unstructured (wiki pages) over semi-formal (tags) to formal (RDF or OWL) and is produced by users with varying levels of expertise. KWQL is a query language for semantic wikis that scales with a user’s level of expertise by combining ideas from keyword query languages with aspects of formal query languages such as SPARQL. In this paper, we discuss KWQL’s implementation KWilt: It uses, for each data format and query type, technology tailored to that setting and combines, in a patchwork fashion, information retrieval, structure matching and constraint evaluation tools with only lightweight “glue”. We show that it is possible to efficiently recognize KWQL queries that can be evaluated using only information retrieval or information retrieval and structure matching. This allows KWilt to evaluate basic queries at almost the speed of the underlying search engine, yet also provides all the power of full first-order queries, where needed. Moreover, adding new data formats or abilities is easier than in a monolithic system.


Query Language Structural Constraint Evaluation Phase Content Item Keyword Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, Y., Aberer, K.: Combining pat-trees and signature files for query evaluation in document databases. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 473–484. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization in semistructured databases. In: VLDB (1997)Google Scholar
  3. 3.
    Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the integration of structure indexes and inverted lists. In: SIGMOD (2004)Google Scholar
  4. 4.
    McHugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: a database management system for semistructured data. SIGMOD Record 26(3) (1997)Google Scholar
  5. 5.
    Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Shimizu, T., Yoshikawa, M.: Full-text and structural indexing of XML documents on B + -tree. IEICE Trans. on Information and Systems 89-D(1) (2006)Google Scholar
  7. 7.
    Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Semplore: A scalable IR approach to search the web of data. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3) (2009)Google Scholar
  8. 8.
    Wang, H., Park, S., Fan, W., Yu, P.S.: ViST: a dynamic index method for querying XML data by tree structures. In: SIGMOD (2003)Google Scholar
  9. 9.
    Weigel, F., Meuss, H., Bry, F., Schulz, K.U.: Content-aware DataGuides: Interleaving IR and DB indexing techniques for efficient retrieval of textual XML data. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 378–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Zou, Q., Liu, S., Chu, W.W.: Ctree: a compact tree for indexing XML data. In: WIDM, pp. 39–46 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Klara Weiand
    • 1
  • Steffen Hausmann
    • 1
  • Tim Furche
    • 1
    • 2
  • François Bry
    • 1
  1. 1.Institute for InformaticsUniversity of MunichMünchenGermany
  2. 2.Computing LaboratoryOxford UniversityOxfordEngland

Personalised recommendations