Redundancy Elimination on RDF Graphs in the Presence of Rules, Constraints, and Queries

  • Reinhard Pichler
  • Axel Polleres
  • Sebastian Skritek
  • Stefan Woltran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6333)

Abstract

Based on practical observations on rule-based inference on RDF data, we study the problem of redundancy elimination on RDF graphs in the presence of rules (in the form of Datalog rules) and constraints (in the form of so-called tuple-generating dependencies), as well as with respect to queries (ranging from conjunctive queries up to more complex ones, particularly covering features of SPARQL, such as union, negation, or filters). To this end, we investigate the influence of several problem parameters (like restrictions on the size of the rules, the constraints, and/or the queries) on the complexity of detecting redundancy. The main result of this paper is a fine-grained complexity analysis of both graph and rule minimisation in various settings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hogan, A., Decker, S.: On the ostensibly silent ‘W’ in OWL 2 RL. In: Polleres, A. (ed.) RR 2009. LNCS, vol. 5837, pp. 118–134. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: Dynamic querying of mass-storage RDF data with rule-based entailment regimes. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 310–327. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for RDF. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 53–67. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logics. In: Proc. WWW’03, pp. 48–57 (2003)Google Scholar
  5. 5.
    de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL. WSML D20.1v0.2 (2005)Google Scholar
  6. 6.
    ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF Schema and a semantic extension involving the OWL vocabulary. J. Web Sem. 3(2-3), 79–115 (2005)MathSciNetGoogle Scholar
  7. 7.
    Hogan, A., Harth, A., Polleres, A.: Scalable authoritative OWL reasoning for the web. International Journal on Semantic Web and Information Systems 5(2) (2009)Google Scholar
  8. 8.
    Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web ontology language profiles. W3C Recommendation (October 2009)Google Scholar
  9. 9.
    Hayes, P.: RDF semantics. Technical report, W3C. W3C Recommendation (February 2004)Google Scholar
  10. 10.
    Lausen, G., Meier, M., Schmidt, M.: SPARQLing constraints for RDF. In: Proc. EDBT’08. ACM Press, New York (2008)Google Scholar
  11. 11.
    Meier, M.: Towards Rule-Based Minimization of RDF Graphs under Constraints. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 89–103. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Pichler, R., Polleres, A., Skritek, S., Woltran, S.: Minimizing RDF graphs under rules and constraints revisited. Technical report, DERI (April 2010), http://www.deri.ie/fileadmin/documents/DERI-TR-2010-04-23.pdf
  13. 13.
    Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple Language, W3C Team Submission (January 2008), http://www.w3.org/TeamSubmission/turtle/
  14. 14.
    Ullman, J.D.: Principles of Database and Knowledge Base Systems. Computer Science Press, New York (1989)Google Scholar
  15. 15.
    Gutierrez, C., Hurtado, C., Mendelzon, A.: Foundations of semantic web databases. In: Proc. PODS’04, pp. 95–106. ACM, New York (2004)Google Scholar
  16. 16.
    Eiter, T., Faber, W., Fink, M., Woltran, S.: Complexity results for answer set programming with bounded predicate arities and implications. Ann. Math. Artif. Intell. 51(2-4), 123–165 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In: Proc. KR’06, pp. 340–351. AAAI Press, Menlo Park (2006)Google Scholar
  18. 18.
    Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 697–787. Oxford University Press, Oxford (1998)Google Scholar
  19. 19.
    Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 114–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3) (2009)Google Scholar
  21. 21.
    Vardi, M.: On the complexity of bounded-variable queries. In: Proc. PODS’95, pp. 266–276. ACM Press, New York (1995)Google Scholar
  22. 22.
    de Bruijn, J.: RIF RDF and OWL Compatibility. W3C Proposed Recommendation (May 2010), http://www.w3.org/TR/2010/PR-rif-rdf-owl-20100511/

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Reinhard Pichler
    • 1
  • Axel Polleres
    • 2
  • Sebastian Skritek
    • 1
  • Stefan Woltran
    • 1
  1. 1.Technische Universität WienAustria
  2. 2.DERINational University of IrelandGalway

Personalised recommendations