A Particle-Based Method for Large-Scale Breaking Waves Simulation

  • Emmanuelle Darles
  • Benoit Crespin
  • Djamchid Ghazanfarpour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6374)


We address in this paper the problem of particle-based simulation of breaking waves. We present a new set of equations based on oceanographic research which allow us to deal with several types of breaking waves and multiple wave trains with full control over governing parameters. In order to reduce computations in non-significant areas, we also describe a simple and efficient multiresolution scheme, controlled using the properties of our breaking wave model.


Wave Train Breaking Wave Smooth Particle Hydrodynamic Computer Animation Impulsion Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jeschke, S., Birkholz, H., Shumann, H.: A procedural model for interactive animation of breaking ocean waves. In: WSCG (2003)Google Scholar
  2. 2.
    Yuksel, C., House, D.H., Keyser, J.: Wave particles. In: SIGGRAPH (2007)Google Scholar
  3. 3.
    Milhaef, V., Metaxas, D., Sussman, M.: Animation and control of breaking waves. In: Symposium on Computer Animation, pp. 315–324 (2004)Google Scholar
  4. 4.
    Thuerey, N., Mueller-Fischer, M., Schirm, S., Gross, M.: Real-time breaking waves for shallow water simulations. In: Pacific Graphics (2007)Google Scholar
  5. 5.
    Bredow, R., Schaub, D., Kramer, D., Hausman, M., Dimian, D., Stirling Duguid, R.: Surf’s up: the making of an animated documentary. In: SIGGRAPH Courses (2007)Google Scholar
  6. 6.
    Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure. Computer Graphics, 457–462 (2004)Google Scholar
  7. 7.
    Irving, G., Guendelman, E., Losasso, F., Fedkiw, R.: Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. 25(3), 805–811 (2006)CrossRefGoogle Scholar
  8. 8.
    Losasso, F., Shinar, T., Selle, A., Fedkiw, R.: Multiple interacting liquids. ACM Trans. Graph. 25(3), 812–819 (2006)CrossRefGoogle Scholar
  9. 9.
    Monaghan, J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Physics 30, 543 (1992)CrossRefGoogle Scholar
  10. 10.
    Desbrun, M., Cani, M.-P.: Smoothed particles: A new paradigm for animating highly deformable bodies. In: Eurographics Workshop on Computer Animation and Simulation, pp. 62–76 (1996)Google Scholar
  11. 11.
    O’Brien, J., Hodgins, J.: Dynamic simulation of splashing fluids. Computer Animation, 188–205 (1995)Google Scholar
  12. 12.
    Foster, N., Fedkiw, R.: Practical animation of liquids. In: SIGGRAPH (2001)Google Scholar
  13. 13.
    Enright, D., Maschner, S., Fedkiw, R.: Animation and rendering of complex water surfaces. ACM Transaction on Computer Graphics 21 3, 736–744 (2002)Google Scholar
  14. 14.
    Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., Ueki, H.: Realistic animation of fluid with splash and foam. Comput. Graph. Forum 22(3), 391–400 (2003)CrossRefGoogle Scholar
  15. 15.
    Kim, J., Cha, D., Chang, B., Koo, B., Ihm, I.: Practical animation of turbulent splashing water. In: Symposium on Computer Animation (2006)Google Scholar
  16. 16.
    Losasso, F., Talton, J., Kwatra, N., Fedkiw, R.: Two-way coupled sph and particle level set fluid simulation. Transactions on Visualization and Computer Graphics 14(4) (2007)Google Scholar
  17. 17.
    Thuerey, N., Rude, U., Stamminger, M.: Animation of open water phenomena with coupled shallow water and free surface simulations. In: Symposium on Computer Animation (2006)Google Scholar
  18. 18.
    Becker, M., Teschner, M.: Weakly compressible sph for free surface flows. In: Symposium on Computer Animation, pp. 209–217 (2007)Google Scholar
  19. 19.
    Desbrun, M., Cani, M.-P.: Space-time adaptive simulation of highly deformable substances. Technical Report 3829, INRIA (December 1999)Google Scholar
  20. 20.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM Transactions on Graphics (SIGGRAPH 2007 papers), vol. 26 (2007)Google Scholar
  21. 21.
    Hong, W., House, D.H., Keyser, J.: Adaptive particles for incompressible fluid simulation. The Visual Computer 24(7-9), 535–543 (2008)zbMATHCrossRefGoogle Scholar
  22. 22.
    Yan, H., Wang, Z., He, J., Chen, X., Wang, C., Peng, Q.: Real-time fluid simulation with adaptive sph. Comput. Animat. Virtual Worlds 20(2‐3), 417–426 (2009)CrossRefGoogle Scholar
  23. 23.
    Radovitzky, R., Ortiz, M.: Lagrangian finite element analysis of newtonian fluid flows. Int. J. Numer. Meth. Engng. 43, 607–619 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Battjes, J.A.: Surf similarity. In: 14th Coastal Engineering Conference, pp. 466–480 (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Emmanuelle Darles
    • 1
  • Benoit Crespin
    • 1
  • Djamchid Ghazanfarpour
    • 1
  1. 1.XLIM - UMR 6172 - CNRSUniversity of Limoges 

Personalised recommendations