Fuzzy Hough Transform-Based Methods for Extraction and Measurements of Single Trees in Large-Volume 3D Terrestrial LIDAR Data

  • Leszek J. Chmielewski
  • Marcin Bator
  • Michał Zasada
  • Krzysztof Stereńczak
  • Paweł Strzeliński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6374)

Abstract

This startup study suggests that more accurate and quicker methods of forestry terrestrial LIDAR data analysis can be developed, but new benchmark data sets with the ground truth data known are necessary for these methods to be validated. It follows from the literature review that the improvement in the methods can be attained by the use of newer Hough transform-based (HT) and other robust fuzzy methods for data segmentation and tree measurements. Segmentation of trees can be done by the limit fuzzification of the data around the breast height. Several HT variants having different properties can be applied to measure the diameter at breast height and the accuracies better than those offered by the commercial software seem to be attainable.

References

  1. 1.
    Aschoff, T., Spiecker, H.: Algorithms for the automatic detection of trees in laser-scanner data. In: Thies et al [19], pp. 71–75Google Scholar
  2. 2.
    Bator, M., Chmielewski, L.J.: Finding regions of interest for cancerous masses enhanced by elimination of linear structures and considerations on detection correctness measures in mammography. Pattern Analysis & Applications 12(4), 377–390 (2009), doi:10.1007/s10044-008-0134-xCrossRefGoogle Scholar
  3. 3.
    Bienert, A., Maas, H.-G., Scheller, S.: Analysis of the information content of terrestrial laserscanner point clouds for the automatic determination of forest inventory parameters. In: Koukal and Schneider [13], pp. 55–60Google Scholar
  4. 4.
    Bienert, A., Scheller, S., et al.: Application of terrestrial laser scanners for the determination of forest inventory parameters. In: Maas, H.G., Schneider, D. (eds.) Proc. ISPRS Commission V Symposium on Image Engineering and Vision Metrology, pp. 25–27 (September 2006)Google Scholar
  5. 5.
    Bienert, A., Scheller, S., et al.: Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. In: Rönnholm et al. [17], pp. 50–55Google Scholar
  6. 6.
    Chmielewski, L.J.: Fuzzy histograms, weak fuzzification and accumulation of periodic quantities. Application in two accumulation-based image processing methods. Pattern Analysis & Applications 9(2-3), 189–210 (2006) doi:10.1007/s10044-006-0037-7Google Scholar
  7. 7.
    Danson, F.M., Hetherington, D., et al.: Three-dimensional forest cannopy structure from terrestrial laser scanning. In: Koukal and Schneider [13], pp. 61–65Google Scholar
  8. 8.
    Hough, P.V.C.: Machine analysis of bubble chamber pictures. In: Proc. Int. Conf. on High Energy Accelerators and Instrumentation. CERN (1959)Google Scholar
  9. 9.
    Illingworth, J., Kittler, J.: The adaptive Hough transform. IEEE Trans. PAMI 9(5), 690–697 (1987)Google Scholar
  10. 10.
    Illingworth, J., Kittler, J.: A survey of the Hough transform. Comp. Vision, Graph., and Image Proc. 44(1), 87–116 (1988)CrossRefGoogle Scholar
  11. 11.
    Khoshelham, K.: Extending Generalized Hough Transform to detect 3D objects in laser range data. In: Rönnholm et al. [17], pp. 206–210Google Scholar
  12. 12.
    Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Comm. Assoc. of Computing Machinery 18(2), 120–122 (1975)MATHGoogle Scholar
  13. 13.
    Koukal, T., Schneider, W. (eds.): Proc. Int. Workshop on 3D Remote Sensing in Forestry, Vienna, February 14-15. EARSeL SIG Forestry and ISPRS WG VIII/11 (2006)Google Scholar
  14. 14.
    Meer, P.: Robust techniques for computer vision. In: Medioni, G., Kang, S.B. (eds.) Emerging Topics in Computer Vision, pp. 107–190. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  15. 15.
    Nixon, M., Aguado, A.: Feature Extraction & Image Processing. Newnes, Oxford (2002)Google Scholar
  16. 16.
    Pitas, I.: Digital Image Processing Algorithms and Applications. John Wiley & Sons, Inc., New York (2000)Google Scholar
  17. 17.
    Rönnholm, P., Hyyppä, H., Hyyppä, J. (eds.): Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, part 3/W52 of IAPRS, Espoo, Finland, September 12-14, vol. XXXVI (2007)Google Scholar
  18. 18.
    Simonse, M., Aschoff, T., et al.: Automatic determination of forest inventory parameters using terrestrial laserscanning. In: Proc. ScandLaser Scientific Workshop on Airborne Laser Scanning of Forests, Umeå, Sweden, pp. 251–257 (2003)Google Scholar
  19. 19.
    Thies, M., Koch, B., et al. (eds.): Laser Scanners for Forest and Landscape Assessment. In: Proc. of the ISPRS working group VIII/2, part 8/W2 of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Freiburg, Germany, October 3-6, vol. XXXXVI (2004)Google Scholar
  20. 20.
    Thies, M., Spiecker, H.: Evaluation and future prospects of terrestrial laser scanning for standardized forest inventories. In: Thies et al. [19], pp. 192–197Google Scholar
  21. 21.
    Vosselman, G., Gorte, B.G.H., Sithole, G., Rabbani, T.: Recognising structure in laser scanner point clouds. In: Thies et al. [19], pp. 33–38Google Scholar
  22. 22.
    Zawiła-Niedźwiecki, T., Stereńczak, K., Bałazy, R., Wencel, A., Strzeliński, P., Zasada, M.: The use of terrestrial and airborne LIDAR technology in forest inventory. Ambiência 4, 57–68 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Leszek J. Chmielewski
    • 1
  • Marcin Bator
    • 1
  • Michał Zasada
    • 2
  • Krzysztof Stereńczak
    • 2
  • Paweł Strzeliński
    • 3
  1. 1.Faculty of Applied Informatics and MathematicsWarsaw University of Life Sciences 
  2. 2.Faculty of ForestryWarsaw University of Life Sciences 
  3. 3.Faculty of ForestryPoznan University of Life Sciences 

Personalised recommendations