Minimalist AdaBoost for Blemish Identification in Potatoes

  • Michael Barnes
  • Grzegorz Cielniak
  • Tom Duckett
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6374)


We present a multi-class solution based on minimalist AdaBoost for identifying blemishes present in visual images of potatoes. Using training examples we use Real AdaBoost to first reduce the feature set by selecting five features for each class, then train binary classifiers for each class, classifying each testing example according to the binary classifier with the highest certainty. Against hand-drawn ground truth data we achieve a pixel match of 83% accuracy in white potatoes and 82% in red potatoes. For the task of identifying which blemishes are present in each potato within typical industry defined criteria (10% coverage) we achieve accuracy rates of 93% and 94%, respectively.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Unay, D., Gosselin, B.: Stem and calyx recognition on ’jonagold’ apples by pattern recognition. Journal of Food Engineering 78, 597–605 (2006)CrossRefGoogle Scholar
  2. 2.
    Bolle, R., Connell, J., Haas, N., Mohan, R., Taubin, G.: Veggievision: A produce recognition system. In: Proc. 3rd IEEE Workshop on Applications of Computer Vision (WACV 1996), Washington, DC, USA, p. 244. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  3. 3.
    Tao, Y., Morrow, C.T., Heinemann, P.H.: Fourier-based separation technique for shape grading of potatoes using machine vision. Trans. American Society of Agricultural Engineers 38(3), 949–957 (1995)Google Scholar
  4. 4.
    Muir, A.J., Ross, D.W., Dewar, C.J., Kennedy, D.: Defect and disease detection in potato tubers. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 3543, pp. 199–207 (1999)Google Scholar
  5. 5.
    Tao, Y., Heinemann, P.H., Varghese, Z.: Machine vision for color inspection of potatoes and apples. Trans. American Society of Agricultural Engineers 38(5), 1555–1561 (1995)Google Scholar
  6. 6.
    Heinemann, P.H., Pathare, N.P., Morrow, C.T.: An automated inspection station for machine-cision grading of potatoes. Machine Vision and Applications 9(1), 14–19 (1996)CrossRefGoogle Scholar
  7. 7.
    Zhou, L., Chalana, V., Kim, Y.: Pc-based machine vision system for real-time computer-aided potato inspection. International Journal of Imaging Systems and Technology 9(6), 423–433 (1998)CrossRefGoogle Scholar
  8. 8.
    Guannan, Z., Yuzhi, T., Junxiong, Z., Wei, L.: Automatic detecting and grading method of potatoes with computer vision. Nongye Jixie Xuebao / Trans. Chinese Society of Agricultural Machinery 40(4), 166–168+1 (2009)Google Scholar
  9. 9.
    Barnes, M., Duckett, T., Cielniak, G., Stroud, G., Harper, G.: Visual detection of blemishes in potatoes using minimalist boosted classifiers. Journal of Food Engineering 98(3), 339–346 (2010)CrossRefGoogle Scholar
  10. 10.
    Freund, Y., Schapire, R.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14(5), 771–780 (1999)Google Scholar
  11. 11.
    De Haan, E.G., van den Bovenkamp, G.W.: Improved diagnosis of powdery scab (spongospora subterranea f.sp. subterranea) symptoms on potato tubers (solanum tuberosum l.). Potato Research 48(1-2), 1–14 (2005)CrossRefGoogle Scholar
  12. 12.
    Schapire, R., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. In: Proc. Conf. on Computational Learning Theory, pp. 80–91 (1998)Google Scholar
  13. 13.
    Vezhnevets, A.: GML AdaBoost MATLAB Toolbox (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Barnes
    • 1
  • Grzegorz Cielniak
    • 1
  • Tom Duckett
    • 1
  1. 1.School of Computer ScienceUniversity of LincolnLincolnUK

Personalised recommendations