Interpretation of Images and Their Sequences Using Potential Active Contour Method

  • Stanisław Walczak
  • Arkadiusz Tomczyk
  • Piotr S. Szczepaniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6374)


The aim of this paper is to present three approaches to cardiac ventricle segmentation, which apply the potential active contour method. Two of these approaches use three-dimensional, and one of them - four-dimensional representation of data. The approaches presented simulates expert’s behaviour. They aim at image segmentation of cardiac ventricles performed at all slices simultaneously, thanks to which every slice can be analysed in the context of knowledge about other slices. The medical image understanding method is not fully automatic, however in comparison to manual segmentation performed by an expert, it saves much time, which may be of vital importance for patient’s health e.g. in pulmonary embolism diagnosis.


Active Contour Interventricular Septum Cardiac Ventricle Heart Ventricle Heart Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall Inc., New Jersey (2002)Google Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 321–331 (1988)Google Scholar
  3. 3.
    Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.): Computer Recognition Systems 2. Advances in Soft Computing, vol. 45. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  4. 4.
    Kurzynski, M., Wozniak, M. (eds.): Computer Recognition Systems 3. Advances in Soft Computing, vol. 57. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  5. 5.
    Walczak, S., Tomczyk, A., Szczepaniak, P.: Application of Contextual Active Contours to Heart Ventricle Shape Detection. Oprogramowanie Naukowo-Techniczne (2009)Google Scholar
  6. 6.
    Sonka, M., Hlavec, V., Boyle, R.: Image Processing, Analysis and Machine Vision. Chapman and Hall, Cambridge (1994)Google Scholar
  7. 7.
    Tadeusiewicz, R., Flasinski, M.: Rozpoznawanie obrazĂłw. Wydawnictwo Naukowe PWN, Warszawa (1991)Google Scholar
  8. 8.
    Tadeusiewicz, R., Ogiela, M.R.: Medical Image Understanding Technology, Studies in Fuzziness and Soft Computing, vol. 156. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Tomczyk, A.: Image segmentation using adaptive potential active contours. In: Kurzynski et al. [3], pp. 148–155Google Scholar
  10. 10.
    Tomczyk, A., Szczepaniak, P.S.: Segmentation of heart image sequences based on human way of recognition. In: Zhong, et al. [13], pp. 225–235Google Scholar
  11. 11.
    Tomczyk, A., Wolski, C., Szczepaniak, P.S., Rotkiewicz, A.: Analysis of changes in heart ventricle shape using contextual potential active contours. In: Kurzynski and Wozniak [4], pp. 397–405Google Scholar
  12. 12.
    Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Transactions on Medical Imaging 16(2) (1997)Google Scholar
  13. 13.
    Zhong, N., Li, K., Lu, S., Chen, L. (eds.): BI 2009. LNCS, vol. 5819. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stanisław Walczak
    • 1
  • Arkadiusz Tomczyk
    • 1
  • Piotr S. Szczepaniak
    • 1
  1. 1.Institute of Information TechnologyTechnical University of ŁódźŁódźPoland

Personalised recommendations