Advertisement

Outer Surface Reconstruction for 3D Fractured Objects

  • Anatoly Kornev
  • Laurent Babout
  • Marcin Janaszewski
  • Hugues Talbot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)

Abstract

We study surface reconstruction using a combination of anisotropic Gaussian filter and image segmentation technique -the minimum surface method. Anisotropic Gaussian filtering allows to manage a contrast between intensities of the discontinuity and the object in a desired direction. The minimum surface method detects properly outer boundaries even affected by boundary leakage in the vicinity of blurred edges. The algorithm is tested on a set of real 3D images of large corrosion cracks in stainless steel that initiated at the surface of the tested samples. Results are presented and discussed.

Keywords

CT Image Segmentation Gaussian Filtering Minimal Surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buffiere, J.Y., Ferrie, E., Proudhon, H., Ludwig, W.: Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Materials Science and Technology 22(9), 1019–1024 (2006)CrossRefGoogle Scholar
  2. 2.
    Birosca, S., Buffiere, J.Y., Garcia-Pastor, F.A., Karadge, M., Babout, L., Preuss, M.: Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction. Acta Materialia 57(19), 5834–5847 (2009)CrossRefGoogle Scholar
  3. 3.
    Babout, L., Marrow, T.J., Engelberg, D., Withers, P.J.: X-ray microtomographic observation of intergranular stress corrosion cracking in sensitised austenitic stainless steel. Materials Sc. and Technology 22(9), 1068–1075 (2006)CrossRefGoogle Scholar
  4. 4.
    Farin, G.: Curves and surfaces for CAGD. A practical guide, 5th edn., 499 p. Academic Press, USA (2002)Google Scholar
  5. 5.
    Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Proc. 23rd Ann. Conf. on Comp. Graphics Inter. Tech., pp. 325–334 (1996)Google Scholar
  6. 6.
    Stoddart, A.J., Baker, M.S.: Surface reconstruction and compression using multiresolution arbitrary topology G1 continuous splines. In: Proc. 14th Int. Conf. on Patt. Recogn., vol. 1, pp. 788–792 (1998)Google Scholar
  7. 7.
    Davis, J., Marschner, S.R., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: Proc. 1st Int. Symp. on 3D Data Proc., Padua, Italy, pp. 1–11 (2002)Google Scholar
  8. 8.
    Bae, E., Weickert, J.: Partial differential equations for interpolation and compression of surfaces. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Verdera, J., Bertalmio, M., Sapiro, G.: Inpainting surface holes. In: Proc. Int. Conf. on Image Proc., pp. 903–906 (2003)Google Scholar
  10. 10.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. of the 4th Eurographics symp. on Geom., SGP 2006, pp. 61–70. Eurographics Assoc., Switzerland (2006)Google Scholar
  11. 11.
    McInerney, T., Terzopoulos, D.: Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis 1(2), 91–108 (1996)CrossRefGoogle Scholar
  12. 12.
    Fan, X., Bazin, P.-L., Bogovic, J., Bai, Y., Prince, J.L.: A multiple geometric deformable model framework for homeomorphic 3D medical image segmentation. In: Proc. Comp. Vis. and Patt. Recogn. Workshops, CVPRW 2008, pp. 1–7 (2008)Google Scholar
  13. 13.
    Keuper, M., Padeken, J., Heun, P., Burkhardt, H., Ronneberger, O.: A 3D active surface model for the accurate segmentation of drosophila Schneider cell nuclei and nucleoli. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 865–874. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Shen, T., Li, H., Qian, Z., Huang, X.: Active volume models for 3D medical image segmentation. In: Proc. of CVPR 2009, pp. 1–8 (2009)Google Scholar
  15. 15.
    Jalba, A.C., Roerdink, J.B.T.M.: Efficient surface reconstruction from noisy data using regularized membrane potentials. IEEE Transaction on image processing 18(5), 1119–1134 (2009)CrossRefGoogle Scholar
  16. 16.
    Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE Trans. Patt. Anal. and Mach. Intell. 28(1), 106–118 (2006)CrossRefGoogle Scholar
  17. 17.
    Marak, L.: Segmention with minimum surface. MS thesis, ESIEE, Paris, pp. 1–48 (2008)Google Scholar
  18. 18.
    Geusebroek, J.M., Smeulders, A.W.M., van de Weijer, J.: Fast anisotropic Gauss filtering. IEEE Transaction on image processing 12(8), 938–943 (2003)CrossRefGoogle Scholar
  19. 19.
    Lampert, C.H., Wirjadi, O.: An optimal nonorthogonal separation of the anisotropic Gaussian convolution filter. IEEE Transaction on image processing 15(11), 3502–3514 (2006)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Ford, J.L.R., Fulkerson, D.R.: Flows in networks. Princeton University Press, NJ (1962)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anatoly Kornev
    • 1
  • Laurent Babout
    • 1
  • Marcin Janaszewski
    • 1
  • Hugues Talbot
    • 2
  1. 1.Computer Engineering DepartmentTechnical University of ŁódźŁódźPoland
  2. 2.Departement InformatiqueUniversité de Paris-EastNoisy-Le-Grand CedexFrance

Personalised recommendations