The Visual SLAM System for a Hexapod Robot

  • Adam Schmidt
  • Andrzej Kasiński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)

Abstract

The precise localization of the mobile robot plays a vital role in the autonomous operation of the mobile robot. The vision based simultaneous localization and mapping (SLAM) is a widely known technique for tracking the movement of the camera in the unknown environment. This paper presents a robot’s movement model which is based on the reference trajectory of the robot. The proposed model was compared with the state-of-the-art model used in the successful MonoSLAM system[8] and provided good results.

Keywords

SLAM hexapod mobile robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davison, A.J., Murray, D.W.: Simultaneous Localization and Map-Building Using Active Vision. IEEE Trans. PAMI 24(7), 865–880 (2002)Google Scholar
  2. 2.
    Sim, R., Elinas, P., Griffin, M., Little, J.J.: Vision-Based SLAM Using the Rao-Blackwellised Particle Filter. In: Proc. IJCAI Workshop Reasoning with Uncertainty in Robotics (2005)Google Scholar
  3. 3.
    Baczyk, R.: Visual Navigation System for a Robot Based on the Modified SLAM Method, PhD Dissertation, Poznan University of Technology (2007) (in Polish)Google Scholar
  4. 4.
    Gil, A., Reinoso, O., Ballesta, M., Juliá, M.: Multi-robot visual SLAM using a Rao-Blackwellized particle filter. Robot. Auton. Syst. 58(1), 68–80 (2010)CrossRefGoogle Scholar
  5. 5.
    Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Monocular Vision Based SLAM for Mobile Robots. In: International Conference on Pattern Recognition (ICPR 2006), pp. 1027–1031 (2006)Google Scholar
  6. 6.
    Sturm, J., Visser, A.: An appearance-based visual compass for mobile robots. Robotics and Autonomous Systems 57(5), 536–545 (2009)CrossRefGoogle Scholar
  7. 7.
    Smith, R., Self, M., Cheeseman, P.: Stochastic Map for Uncertain Spatial Relationships. In: Proc. Fourth Int’l. Symp. Robotics Research, pp. 467–474 (1987)Google Scholar
  8. 8.
    Davison, A.J., Reid, I., Molton, N., Stasse, O.: MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. PAMI 29(6), 1052–1067 (2007)Google Scholar
  9. 9.
    Civera, J., Davison, A.J., Montiel, J.M.M.: Inverse Depth Parametrization for Monocular SLAM. IEEE Transactions on Robotics 24(5), 932–945 (2008)CrossRefGoogle Scholar
  10. 10.
    Belter, D., Walas, K., Skrzypczynski, P.: Autonomous Hexapod Robot – Development of an Improved Mechanical Design and Control System. Pomiary Automatyka Robotyka 2, 249–258 (2009) (in Polish)Google Scholar
  11. 11.
    Fabrizio, J., Devars, J.: An Analytical Solution To The Perspective-n-point Problem For Common Planar Camera And For Catadioptric Sensor. International Journal of Image and Graphics 8, 135–155 (2008)CrossRefGoogle Scholar
  12. 12.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Baczyk, R., Skrzypczynski, P.: Mobile Robot Localization by Means of an Overhead Camera. In: Automation 2001, pp. 220–229 (2001) (in Polish)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Schmidt
    • 1
  • Andrzej Kasiński
    • 1
  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations