Methods for Visualization of Bone Tissue in the Proximity of Implants

  • Hamid Sarve
  • Joakim Lindblad
  • Carina B. Johansson
  • Gunilla Borgefors
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)

Abstract

In this work we present two methods for visualization of SRμCT-scanned 3D volumes of screw-shaped bone implant samples: thread fly-through and 2D unfolding. The thread fly-through generates an animation by following the thread helix and extracting slices along it. Relevant features, such as bone ratio and bone implant contact, are computed for each slice of the animation and displayed as graphs beside the animation. The 2D unfolding, on the other hand, maps the implant surface onto which feature information is projected to a 2D image, providing an instant overview of the whole implant. The unfolding is made area-preserving when appropriate. These visualization methods facilitate better understanding of the bone-implant integration and provides a good platform for communication between involved experts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balto, K., et al.: Quantification of Periapical Bone Destruction in Mice by Micro-computed Tomography. Journal of Dental Research 79, 35–40 (2000)CrossRefGoogle Scholar
  2. 2.
    Barber, C.B., Dobkin, D., Huhdanpaa, H.: The Quickhull Algorithm for Convex Hulls. ACM Transactions on Mathematical Software 22(4), 469–483 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bernhardt, R., et al.: Comparison of Microfocus- and Synchotron X-ray Tomography for the analysis of Oseointegration Around TI6AL4V-Implants. European Cells and Materials 7, 42–50 (2004)Google Scholar
  4. 4.
    Bernhardt, R., et al.: 3D analysis of bone formation around titanium implants using micro computed tomography. In: Proc. of SPIE, vol. 6318 (2006)Google Scholar
  5. 5.
    Candecca, R., et al.: Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 28, 2506–2521 (2007)Google Scholar
  6. 6.
    Gavrilovic, M., Wählby, C.: Quantification of Colocalization and Cross-talk based on Spectral Angles. Journal of Microscopy 234, 311–324 (2009)CrossRefGoogle Scholar
  7. 7.
    Ito, M.: Assessment of bone quality using micro-tomography (micro-CT) and synchotron micro-CT. Journal of Bone Miner Metab 23, 115–121 (2005)CrossRefGoogle Scholar
  8. 8.
    Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  9. 9.
    van Lenthe, G.H., Muller, R.: CT-Based Visualization and Quantification of Bone Microstructure In Vivo. IBMS BoneKEy 5(11), 410–425 (2008)Google Scholar
  10. 10.
    Luo, L.M., et al.: A moment-based three-dimensional edge operator. IEEE Trans. Biomed. Eng. 40, 693–703 (1993)CrossRefGoogle Scholar
  11. 11.
    Numata, Y., et al.: Micro-CT Analysis of Rabbit Cancellous Bone Aronund Implants. Journal of Hard Tissue Biology 16, 91–93 (2007)CrossRefGoogle Scholar
  12. 12.
    Peyrin, F., Cloetens, P.: Synchrotron radiation μ CT of biological tissue. IEEE ISBI, 365–368 (July 2002)Google Scholar
  13. 13.
    Sarve, H., et al.: Quantification of Bone Remodeling in the Proximity of Implants. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 253–260. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Sarve, H., et al.: Quantification of Bone Remodeling in SRμCT Images of Implants. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 770–779. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Weiss, P., et al.: Synchotron X–ray microtomography (on a micron scale) provides three–dimensional imaging representation of bone ingrowth in calcium phophate biomaterials. Biomaterials 24, 4591–4601 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hamid Sarve
    • 1
  • Joakim Lindblad
    • 1
  • Carina B. Johansson
    • 2
  • Gunilla Borgefors
    • 1
  1. 1.Centre for Image Analysis, SLUUppsalaSweden
  2. 2.School of Health and Medical SciencesÖrebro UniversitySweden

Personalised recommendations