Visual Programming Environment Based on Hypergraph Representations

  • Peter Kapec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)


In this paper we present a concept of a visual programming environment that uses hypergraphs for representing, querying and visualizing software artifacts. The hypergraph representation allows to store semantic relations between software artifacts an can be visualized with well-known graph drawing algorithms. The proposed visual programming environment focuses not only on software visualization, but also offers context visualization for programming tasks. We present visualizations of an existing software system and demonstrate how contextual information can be displayed when browsing and modifying source code artifacts.


Software Visualization Visual Language Software Artifact Programming Task Algorithm Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auillans, E.A.: A formal model for Topic Maps. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 69–83. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bardohl, R., Minas, M., Taentzer, G., Schürr, A.: Application of graph transformation to visual languages, pp. 105–180. World Scientific Publishing Co., Singapore (1999)Google Scholar
  3. 3.
    Battista, G.D.: Algorithms for Drawing Graphs: an Annotated Bibliography Computational Geometry. Theory and Applications 4, 235–282 (1994)zbMATHGoogle Scholar
  4. 4.
    Bragdon, A., et al.: Code Bubbles: Rethinking the User Interface Paradigm of Integrated Development Environments. In: Proc. of ICSE 2010, the 32nd ACM/IEEE International Conference on Software Engineering, vol. 1, pp. 455–464. ACM, New York (2010)CrossRefGoogle Scholar
  5. 5.
    Brown, M.H., Sedgewick, R.: A system for algorithm animation. SIGGRAPH Comput. Graph. 18(3), 177–186 (1984)CrossRefGoogle Scholar
  6. 6.
    Diehl, S.: Software Visualization - Visualizing the Structure, Behaviour and Evolution of Software. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  7. 7.
    Edwards, J.: Subtext: uncovering the simplicity of programming. In: Proc. of OOPSLA 2005, pp. 505–518. ACM, NY (2005)CrossRefGoogle Scholar
  8. 8.
    Elmqvist, N.: 3Dwm: A Platform for Research and Development of Three-Dimensional User Interfaces Technical Report no.2003-04 (2003)Google Scholar
  9. 9.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Software - Practice & Experience 21, 1129–1164 (1991)CrossRefGoogle Scholar
  10. 10.
    Green, T.R.G., Petre, M.: When visual programs are harder to read than textual programs. In: Proceedings of ECCE-6, 6th European Conference on Cognitive Ergonomics, pp. 167–180 (1992)Google Scholar
  11. 11.
    Lewerentz, C., Simon, F.: Metrics-based 3d visualization of large object-oriented programs. In: VISSOFT 2002: Proceedings of the 1st International Workshop on Visualizing Software for Understanding and Analysis. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  12. 12.
    Najork, M.A.: Programming in three dimensions. PhD thesis, Champaign, IL, USA (1994)Google Scholar
  13. 13.
    Price, B.A., Baecker, R.M., Small, I.S.: A principled taxonomy of software visualization. Journal of Visual Languages & Computing 4(3), 211–266 (1993)CrossRefGoogle Scholar
  14. 14.
    Poulovassili, A., McBrien, P.: A general formal framework for schema transformation. Data and Knowledge Engineering 28(1), 47–71 (1998)CrossRefGoogle Scholar
  15. 15.
    Rauschmayer, A., Renner, R.: Knowledge-representation based software engineering. Technical Report 0407, Ludwig-Maximilians-Universität Müunchen, Institut für Informatik (2004)Google Scholar
  16. 16.
    Rauschmayer, A., Renner, P.: Tube: Interactive Model-Integrated Object-Oriented Programming. In: Proc. IASTED Int. Conf. Software Engineering and Applications, SEA (2004)Google Scholar
  17. 17.
    Shneiderman, B., Plaisant, C.: Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4th edn. Pearson Addison Wesley, London (2004)Google Scholar
  18. 18.
    Theodoratos, D.: Semantic integration and querying of heterogeneous data sources using a hypergraph data model. In: Eaglestone, B., North, S.C., Poulovassilis, A. (eds.) BNCOD 2002. LNCS, vol. 2405, pp. 166–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Peter Kapec
    • 1
  1. 1.Slovak University of TechnologyBratislavaSlovakia

Personalised recommendations