Spectrum Evaluation on Multispectral Images by Machine Learning Techniques

  • Marcin Michalak
  • Adam Świtoński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6375)

Abstract

Multispectral pictures of skin are considered as the way of detection of regions with tumor. This article raises the problem of postprocessing of the color spectrum for the improvement of the tumor region detection accuracy. As the reference point spectra of 24 model colors were aquisited and then compared with their original spectra. Difference betweeen the original and aquisited spectra motivated the authors to use data mining nonparametrical techniques to find the measured spectra postprocessing technique. Two different approaches are described: classificational and regressional.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proc. of the 5th Annu. Workshop on Comput. Learn. Theory, pp. 144–152 (1992)Google Scholar
  2. 2.
    Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A.: SVM and Kernel Methods Matlab Toolbox, Perception Systemes et Information, INSA de Rouen, Rouen, France (2005), http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
  3. 3.
    Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A.J., Vapnik, V.N.: Support vector regression machines. In: Adv. in Neural Inf. Process. Syst., vol. IX, pp. 155–161 (1997)Google Scholar
  4. 4.
    Epanechnikov, V.A.: Nonparametric Estimation of a Multivariate Probability Density. Theory of Probab. and its Appl. 14, 153–158 (1969)CrossRefGoogle Scholar
  5. 5.
    Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training SVM. J. of Mach. Learn. Res. 6, 1889–1918 (2005)MathSciNetGoogle Scholar
  6. 6.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)Google Scholar
  7. 7.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall, Boca Raton (1986)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marcin Michalak
    • 1
    • 3
  • Adam Świtoński
    • 2
    • 3
  1. 1.Central Mining InstituteKatowicePoland
  2. 2.Polish-Japanese Institute of Information TechnologyBytomPoland
  3. 3.Silesian University of TechnologyGliwicePoland

Personalised recommendations