Ada and Grace: Toward Realistic and Engaging Virtual Museum Guides

  • William Swartout
  • David Traum
  • Ron Artstein
  • Dan Noren
  • Paul Debevec
  • Kerry Bronnenkant
  • Josh Williams
  • Anton Leuski
  • Shrikanth Narayanan
  • Diane Piepol
  • Chad Lane
  • Jacquelyn Morie
  • Priti Aggarwal
  • Matt Liewer
  • Jen-Yuan Chiang
  • Jillian Gerten
  • Selina Chu
  • Kyle White
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6356)

Abstract

To increase the interest and engagement of middle school students in science and technology, the InterFaces project has created virtual museum guides that are in use at the Museum of Science, Boston. The characters use natural language interaction and have near photoreal appearance to increase and presents reports from museum staff on visitor reaction.

Keywords

virtual human applications photoreal characters natural language interaction virtual museum guides STEM informal science education 

References

  1. 1.
    Reeves, B., Nass, C.: The Media Equation. Cambridge University Press, Cambridge (1996)Google Scholar
  2. 2.
    Krämer, N.C., Tietz, B., Bente, G.: Effects of embodied interface agents and their gestural activity. In: Rist, T., Aylett, R.S., Ballin, D., Rickel, J. (eds.) IVA 2003. LNCS (LNAI), vol. 2792, pp. 292–300. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Gratch, J., Wang, N., Okhmatovskaia, A., Lamothe, F., Morales, M., van der Werf, R., Morency, L.-P.: Can virtual humans be more engaging than real ones? In: 12th International Conference on Human-Computer Interaction, Beijing, China (2007)Google Scholar
  4. 4.
    Tai, R., Liu, C., Maltese, A., Fan, X.: Planning early for careers in science. Science(Washington) 312, 1143–1144 (2006)CrossRefGoogle Scholar
  5. 5.
    Slater, M., Khanna, P., Mortensen, J., Yu, I.: Visual realism enhances realistic response in an immersive virtual environment. IEEE Computer Graphics and Applications 29, 76–84 (2009)CrossRefGoogle Scholar
  6. 6.
    MacDorman, K., Coram, J., Ho, C.-C., Patel, H.: Gender Differences in the Impact of Presentational Factors in Human Character Animation on Decisions in Ethical Dilemmas. Presence: Teleoperators and Virtual Environments 19 (2010)Google Scholar
  7. 7.
    Bell, L., Gustafson, J.: Child and adult speaker adaptation during error resolution in a publicly available spoken dialogue system. In: EUROSPEECH-2003, pp. 613–616 (2003)Google Scholar
  8. 8.
    Kopp, S., Gesellensetter, L., Krämer, N., Wachsmuth, I.: A conversational agent as museum guide - design and evaluation of a real-world application. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 329–343. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bickmore, T., Pfeifer, L., Schulman, D., Perera, S., Senanayake, C., Nazmi, I.: Public displays of affect: deploying relational agents in public spaces. In: CHI 2008, pp. 3297–3302. ACM, New York (2008)Google Scholar
  10. 10.
    Artstein, R., Gandhe, S., Gerten, J., Leuski, A., Traum, D.: Semi-formal evaluation of conversational characters. In: Grumberg, O., Kaminski, M., Katz, S., Wintner, S. (eds.) Languages: From Formal to Natural. LNCS, vol. 5533, pp. 22–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Hartholt, A., Gratch, J., Weiss, L., The Gunslinger Team: At the virtual frontier: Introducing gunslinger, a multi-character, mixed-reality, story-driven experience. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H.H. (eds.) IVA 2009. LNCS, vol. 5773, pp. 500–501. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Pellom, B., Hacioglu, K.: Sonic: The university of colorado continuous speech recognizer. University of Colorado, Technical Report# TR-CSLR-2001-01, Boulder, Colorado (2001)Google Scholar
  13. 13.
    Leuski, A., Traum, D.: NPCEditor: A tool for building question-answering characters. In: Language Resources and Evaluation Conference (2010)Google Scholar
  14. 14.
    Leuski, A., Traum, D.: Practical language processing for virtual humans. In: Conference on Innovative Applications of Artifical Intelligence (2010)Google Scholar
  15. 15.
    Thiebaux, M., Marshall, A., Marsella, S., Kallmann, M.: SmartBody: Behavior Realization for Embodied Conversational Agents. In: International Conference on Autonomous Agents and Multi-Agent Systems, Portugal (2008)Google Scholar
  16. 16.
    Vilhjalmsson, H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp, S., Mancini, M., Marsella, S., Marshall, A.N., Pelachaud, C., Ruttkay, Z., Thorisson, K.R., van Welbergen, H., van der Werf, R.: The behavior markup language: Recent developments and challenges. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 99–111. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Ma, W., Hawkins, T., Peers, P., Chabert, C., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Rendering Techniques 2007 (2007)Google Scholar
  18. 18.
    Alexander, O., Rogers, M., Lambeth, W., Chiang, M., Debevec, P.: Creating a Photoreal Digital Actor: The Digital Emily Project. In: Sixth European Conference on Visual Media Production (CVMP) (2009)Google Scholar
  19. 19.
    Piwek, P.: Presenting arguments as fictive dialogue. In: 8th Workshop on Computational Models of Natural Argument (in conjunction with ECAI 2008), Patras, Greece (2008)Google Scholar
  20. 20.
    Baylor, A., Ebbers, S.: Evidence that multiple agents facilitate greater learning. In: Hoppe, U., Verdejo, M., Kay, J. (eds.) Artificial Intelligence in Education: Shaping the Future of Learning Through Intelligent Technologies, pp. 377–397. IOS Press, Amsterdam (2003)Google Scholar
  21. 21.
    Stolcke, A.: SRILM-an Extensible Language Modeling Toolkit. In: Seventh International Conference on Spoken Language Processing, pp. 901–904 (2002)Google Scholar
  22. 22.
    Wang, D., Narayanan, S.: A confidence-score based unsupervised MAP adaptation for speech recognition. In: 36th Asilomar Conference on Signals, Systems and Computers, Asilomar, CA (2002)Google Scholar
  23. 23.
    Krippendorff, K.: Content analysis: An introduction to its methodology. Sage Publications, Inc., Thousand Oaks (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • William Swartout
    • 1
  • David Traum
    • 1
  • Ron Artstein
    • 1
  • Dan Noren
    • 2
  • Paul Debevec
    • 1
  • Kerry Bronnenkant
    • 2
  • Josh Williams
    • 1
  • Anton Leuski
    • 1
  • Shrikanth Narayanan
    • 3
  • Diane Piepol
    • 1
  • Chad Lane
    • 1
  • Jacquelyn Morie
    • 1
  • Priti Aggarwal
    • 1
  • Matt Liewer
    • 1
  • Jen-Yuan Chiang
    • 1
  • Jillian Gerten
    • 1
  • Selina Chu
    • 3
  • Kyle White
    • 3
  1. 1.USC Institute for Creative TechnologiesUSA
  2. 2.Museum of ScienceBoston
  3. 3.USC Speech Analysis and Interpretation LaboratoryUSA

Personalised recommendations