Advertisement

Finding Critical Nodes for Inhibiting Diffusion of Complex Contagions in Social Networks

  • Chris J. Kuhlman
  • V. S. Anil Kumar
  • Madhav V. Marathe
  • S. S. Ravi
  • Daniel J. Rosenkrantz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6322)

Abstract

We study the problem of inhibiting diffusion of complex contagions such as rumors, undesirable fads and mob behavior in social networks by removing a small number of nodes (called critical nodes) from the network. We show that, in general, for any ρ ≥ 1, even obtaining a ρ-approximate solution to these problems is NP-hard. We develop efficient heuristics for these problems and carry out an empirical study of their performance on three well known social networks, namely epinions, wikipedia and slashdot. Our results show that the heuristics perform well on the three social networks.

Keywords

Social Network Online Social Network Discrete Dynamical System Critical Node Seed Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting Critical Nodes in Sparse Graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of Reachability Problems for Finite Discrete Dynamical Systems. J. Comput. Syst. Sci. 72(8), 1317–1345 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Borgatti, S.: Identifying sets of key players in a social network. Comput. Math. Organiz. Theor. 12, 21–34 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    Centola, D., Eguiluz, V., Macy, M.: Cascade Dynamics of Complex Propagation. Physica A 374, 449–456 (2006)CrossRefGoogle Scholar
  5. 5.
    Centola, D., Macy, M.: Complex Contagions and the Weakness of Long Ties. American Journal of Sociology 113(3), 702–734 (2007)CrossRefGoogle Scholar
  6. 6.
    Cha, M., Mislove, A., Adams, B., Gummadi, K.: Characterizing Social Cascades in Flickr. In: Proc. of 1st First Workshop on Online Social Networks, pp. 13–18 (2008)Google Scholar
  7. 7.
    Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic Thresholds in Real Networks. ACM Trans. Inf. Syst. Secur. 10(4), 13-1–13-26 (2008)Google Scholar
  8. 8.
    Dezso, Z., Barabasi, A.: Halting Viruse. In: Scale-Free Networks. Physical Review E 65, 055103-1–055103-4 (2002)Google Scholar
  9. 9.
    Domingos, P., Richardson, M.: Mining the Network Value of Customers. In: Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2001), pp. 57–61 (2001)Google Scholar
  10. 10.
    Dreyer, P., Roberts, F.: Irreversible k-Threshold Processes: Graph-Theoretical Threshold Models of the Spread of Disease and Opinion. Discrete Applied Mathematics 157, 1615–1627 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets. Cambridge University Press, Cambridge (2010)Google Scholar
  12. 12.
    Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structure of Social Contact Networks and Their Impact on Epidemics. In: Abello, J., Cormode, G. (eds.) Discrete Methods in Epidemiology. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp. 179–200. American Mathematical Society, Providence (2006)Google Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  14. 14.
    Granovetter, M.: The Strength of Weak Ties. American Journal of Sociology 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  15. 15.
    Granovetter, M.: Threshold Models of Collective Behavior. American Journal of Sociology 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  16. 16.
    Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information Diffusion Through Blogspace. In: Proc. of the 13th International World Wide Web Conference (WWW 2004), pp. 491–501 (2004)Google Scholar
  17. 17.
    Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of Trust and Distrust. In: Proc. of the 13th International World Wide Web Conference (WWW 2004), pp. 403–412 (2004)Google Scholar
  18. 18.
    Habiba, Yu, Y., Berger-Wolf, T., Saia, J.: Finding Spread Blockers in Dynamic Networks. In: The 2nd SNA-KDD Workshop 2008, SNA-KDD 2008 (2008)Google Scholar
  19. 19.
    Harris, K.: The National Longitudinal Study of Adolescent Health (Add Health), Waves I and II, 1994-1996; Wave III, 2001-2002 [machine-readable data file and documentation]. arolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (2008)Google Scholar
  20. 20.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the Spread of Influence Through a Social Network. In: Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2003), pp. 137–146 (2003)Google Scholar
  21. 21.
    Kempe, D., Kleinberg, J., Tardos, E.: Influential Nodes in a Diffusion Model for Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Kleinberg, J.: Cascading Behavior in Networks: Algorithmic and Economic Issues. In: Nissan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory, ch. 24, pp. 613–632. Cambridge University Press, New York (2007)Google Scholar
  23. 23.
    Kossinets, G., Kleinberg, J., Watts, D.: The Structure of Information Pathways in a Social Communication Network. In: Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery, KDD 2008 (2008)Google Scholar
  24. 24.
    Kuhlman, C.J., Anil Kumar, V.S., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Computational Aspects of Ratcheted Discrete Dynamical Systems (April 2010) (under preparation)Google Scholar
  25. 25.
    Kuhlman, C.J., Anil Kumar, V.S., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: NDSSL Technical Report No. 10-060 (2010), http://ndssl.vbi.vt.edu/download/kuhlman/tr-10-60.pdf
  26. 26.
    Leskovec, J., Adamic, L., Huberman, B.: The Dynamics of Viral Marketing. ACM Transactions on the Web, 1(1) (2007)Google Scholar
  27. 27.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting Positive and Negative Links in Online Social Networks. In: WWW 2010 (2010)Google Scholar
  28. 28.
    Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-Effective Outbreak Detection in Networks. In: Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery, KDD 2007 (2007)Google Scholar
  29. 29.
    Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters (2008), Appears as arXiv.org:0810.1355Google Scholar
  30. 30.
    Richardson, M., Agrawal, R., Domingos, P.: Trust Management for the Semantic Web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)Google Scholar
  31. 31.
    Richardson, M., Domingos, P.: Mining Knowledge-Sharing Sites for Viral Marketing. In: Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2002), pp. 61–70 (2002)Google Scholar
  32. 32.
    Tantipathananandh, C., Berger-Wolf, T.Y., Kempe, D.: A Framework for Community Identification in Dynamic Social Networks. In: Proc. ACM Intl. Conf. on Data Mining and Knowledge Discovery (KDD 2007), pp. 717–726 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chris J. Kuhlman
    • 1
  • V. S. Anil Kumar
    • 1
  • Madhav V. Marathe
    • 1
  • S. S. Ravi
    • 2
  • Daniel J. Rosenkrantz
    • 2
  1. 1.Virginia Bioinformatics InstituteVirginia TechBlacksburgUSA
  2. 2.Computer Science DepartmentUniversity at Albany – SUNYAlbany, NYUSA

Personalised recommendations