A General Approach to Construction and Determination of the Linear Complexity of Sequences Based on Cosets

  • Ayça Çeşmelioğlu
  • Wilfried Meidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6338)

Abstract

We give a general approach to N-periodic sequences over a finite field \(\mathbb F_q\) constructed via a subgroup D of the group of invertible elements modulo N. Well known examples are Legendre sequences or the two-prime generator. For some generalizations of sequences considered in the literature and for some new examples of sequence constructions we determine the linear complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bai, E., Liu, X., Xiao, G.: Linear complexity of new generalized cyclotomic sequences of order two of length pq. IEEE Trans. Inform. Theory 51, 1849–1853 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brandstätter, N., Winterhof, A.: Some notes on the two-prime generator of order 2. IEEE Trans. Inform. Theory 51, 3654–3657 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. North-Holland Publishing Co., Amsterdam (1998)MATHGoogle Scholar
  4. 4.
    Dai, Z., Yang, J., Gong, G., Wang, P.: On the linear complexity of generalized Legendre sequences. In: Sequences and their Applications, 145–153 (2001); Discrete Math. Theor. Comput. Sci. (Lond.). Springer, London (2002) Google Scholar
  5. 5.
    Ding, C., Helleseth, T., Shan, W.: On the linear complexity of Legendre sequences. IEEE Trans. Inform. Theory 44, 1276–1278 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ding, C., Helleseth, T.: On cyclotomic generator of order r. Inform. Process. Letters 66, 21–25 (1998)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ding, C.: Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields Appl. 3, 159–174 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ding, C.: Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. Inform. Theory 44, 1699–1702 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Green, D., Garcia-Perera, L.: The linear complexity of related prime sequences. Proc. R. Soc. Lond. A 460, 487–498 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kim, J.-H., Song, H.-Y.: On the linear complexity of Hall’s sextic residue sequences. IEEE Trans. Inform. Theory 47, 2094–2096 (2001)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1986)MATHGoogle Scholar
  12. 12.
    Meidl, W.: Remarks on a cyclotomic sequence. Designs, Codes and Cryptography 51, 33–43 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Yan, T., Li, S., Xiao, G.: On the linear complexity of generalized cyclotomic sequences with the period p m. Appl. Math. Lett. 21, 187–193 (2008)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Yan, T., Chen, Z., Xiao, G.: Linear complexity of Ding generalized cyclotomic sequences. Journal of Shanghai University (English Edition) 11, 22–26 (2007)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zhang, J., Zhao, C.A., Ma, X.: Linear complexity of generalized cyclotomic sequences with length 2p m. AAECC 21, 93–108 (2010)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ayça Çeşmelioğlu
    • 1
  • Wilfried Meidl
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabancı UniversityTuzlaTurkey

Personalised recommendations