Improved Dynamic Lexicographic Ordering for Multi-Objective Optimisation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6239)


There is a variety of methods for ranking objectives in multi-objective optimization and some are difficult to define because they require information a priori (e.g. establishing weights in a weighted approach or setting the ordering in a lexicographic approach). In many-objective optimization problems, those methods may exhibit poor diversification and intensification performance. We propose the Dynamic Lexicographic Approach (DLA). In this ranking method, the priorities are not fixed, but they change throughout the search process. As a result, the search process is less liable to get stuck in local optima and therefore, DLA offers a wider exploration in the objective space. In this work, DLA is compared to Pareto dominance and lexicographic ordering as ranking methods within a Discrete Particle Swarm Optimization algorithm tackling the Vehicle Routing Problem with Time Windows.


Multi-objective Optimization Swarm Optimization Combinatorial Optimization Vehicle Routing Problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization. part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing 7(1), 109–124 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Castro-Gutierrez, J., Landa-Silva, D., Moreno Perez, J.: Dynamic lexicographic approach for heuristic multi-objective optimization. In: Proceedings of the Workshop on Intelligent Metaheuristics for Logistic Planning (CAEPIA-TTIA 2009) (Seville (Spain)), pp. 153–163 (2009)Google Scholar
  3. 3.
    Coello, C., Lamont, G., Veldhuizen, D.: Evolutionary algorithms for solving Multi-Objective problems. In: Genetic and Evolutionary Computation, Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Consoli, S., Moreno-Pérez, J.A., Darby-Dowman, K., Mladenović, N.: Discrete particle swarm optimization for the minimum labelling steiner tree problem. Natural Computing 9(1), 29–46 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dantzig, G., Ramser, J.: The truck dispatching problem. Management Science 6(1), 80–91 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dorronsoro Díaz, B.: VRP web (2009),
  7. 7.
    Ehrgott, M., Gandibleux, X.: Multiple criteria optimization: State of the art annotated bibliographic survey. International Series in Operations Research and Management Science, vol. (52) Springer/Kluwer (2002)Google Scholar
  8. 8.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks - Proceedings, vol. 4, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Kokolo, I., Hajime, K., Shigenobu, K.: Failure of pareto-based MOEAs, does non-dominated really mean near to optimal? In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 957–962. IEEE press, Los Alamitos (2001)Google Scholar
  10. 10.
    Laporte, G., Golden, B., Grazia, M., Melissa, A.: The vehicle routing problem: Latest advances and new challenges. Operations Research/Computer Science Interfaces Series, vol. 43. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: On the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.ASAP Research Group, School of Computer ScienceUniversity of NottinghamUK
  2. 2.Dpto. de Estadística, I.O. y ComputaciónUniversidad de La LagunaSpain

Personalised recommendations