Advertisement

Variable Neighborhood Search and Ant Colony Optimization for the Rooted Delay-Constrained Minimum Spanning Tree Problem

  • Mario Ruthmair
  • Günther R. Raidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6239)

Abstract

The rooted delay-constrained minimum spanning tree problem is an NP-hard combinatorial optimization problem arising for example in the design of centralized broadcasting networks where quality of service constraints are of concern. We present two new approaches to solve this problem heuristically following the concepts of ant colony optimization (ACO) and variable neighborhood search (VNS). The ACO uses a fast construction heuristic based on node delays and local improvement exploiting two different neighborhood structures. The VNS employs the same neighborhood structures but additionally applies various kinds of shaking moves. Experimental results indicate that both metaheuristics outperform existing approaches whereas the ACO produces mostly the best solutions.

Keywords

Variable Neighborhood Variable Neighborhood Search Minimum Steiner Tree Minimum Span Tree Problem Variable Neighborhood Descent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dahl, G., Gouveia, L., Requejo, C.: On formulations and methods for the hop-constrained minimum spanning tree problem. In: Handbook of Optimization in Telecommunications, pp. 493–515. Springer Science + Business Media (2006)Google Scholar
  2. 2.
    Gouveia, L., Paias, A., Sharma, D.: Modeling and Solving the Rooted Distance-Constrained Minimum Spanning Tree Problem. Computers and Operations Research 35(2), 600–613 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM Journal on Applied Mathematics 16(1), 1–29 (1968)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401 (1957)Google Scholar
  5. 5.
    Salama, H.F., Reeves, D.S., Viniotis, Y.: The Delay-Constrained Minimum Spanning Tree Problem. In: Blum, C., Roli, A., Sampels, M. (eds.) Proceedings of the 2nd IEEE Symposium on Computers and Communications, pp. 699–703 (1997)Google Scholar
  6. 6.
    Ruthmair, M., Raidl, G.R.: A Kruskal-Based Heuristic for the Rooted Delay-Constrained Minimum Spanning Tree Problem. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2009. LNCS, vol. 5717, pp. 713–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematics Society 7(1), 48–50 (1956)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Skorin-Kapov, N., Kos, M.: A GRASP heuristic for the delay-constrained multicast routing problem. Telecommunication Systems 32(1), 55–69 (2006)CrossRefGoogle Scholar
  9. 9.
    Xu, Y., Qu, R.: A GRASP approach for the Delay-constrained Multicast routing problem. In: Proceedings of the 4th Multidisplinary International Scheduling Conference (MISTA4), Dublin, Ireland, pp. 93–104 (2009)Google Scholar
  10. 10.
    Ghaboosi, N., Haghighat, A.T.: A Path Relinking Approach for Delay-Constrained Least-Cost Multicast Routing Problem. In: 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 383–390 (2007)Google Scholar
  11. 11.
    Qu, R., Xu, Y., Kendall, G.: A Variable Neighborhood Descent Search Algorithm for Delay-Constrained Least-Cost Multicast Routing. In: Proceedings of Learning and Intelligent OptimizatioN (LION3), pp. 15–29. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Leggieri, V., Haouari, M., Triki, C.: The Steiner Tree Problem with Delays: A Tight Compact Formulation and Reduction Procedures. Technical report, Universita del Salento, Lecce, Italy (2010)Google Scholar
  13. 13.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1), 269–271 (1959)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Gouveia, L.: Multicommodity flow models for spanning trees with hop constraints. European Journal of Operational Research 95, 178–190 (1996)MATHCrossRefGoogle Scholar
  15. 15.
    Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130(3), 449–467 (2001)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Stützle, T., Hoos, H.: MAX–MIN ant system. Future Generation Computer Systems 16, 889–914 (2000)CrossRefGoogle Scholar
  17. 17.
    Duff, I., Erisman, A., Reid, J.: Direct methods for sparse matrices. Oxford University Press, USA (1989)MATHGoogle Scholar
  18. 18.
    Gruber, M., van Hemert, J., Raidl, G.R.: Neighborhood Searches for the Bounded Diameter Minimum Spanning Tree Problem Embedded in a VNS, EA, and ACO. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1187–1194. ACM, New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mario Ruthmair
    • 1
  • Günther R. Raidl
    • 1
  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria

Personalised recommendations