An Event-Centric Provenance Model for Digital Libraries

  • Donatella Castelli
  • Leonardo Candela
  • Paolo Manghi
  • Pasquale Pagano
  • Cristina Tang
  • Costantino Thanos
Part of the Communications in Computer and Information Science book series (CCIS, volume 91)


Provenance is intended as the description of the origin and/or of the descendant line of data. In the last decade, keeping track of provenance has become crucial for the correct exploitation of data in a wide variety of application domains. The rapid evolution of digital libraries, which have become today advanced systems for the integration and management of cross-domain digital objects, recently called for models capturing the aspects of data provenance in this application field. However, there is no common definition of digital library provenance and existing solutions address the problem only from the perspective of specific application scenarios. In this paper we propose a provenance model for digital libraries, inspired by approaches and experiences in the e-Science and cultural heritage worlds and based on the notion of event occurred to an object. The model aims at capturing the specificities of provenance for digital libraries objects in order to provide practitioners and researchers in the field with common DL-specific provenance description languages.


Digital Library Information Object Reference Object Data Provenance Provenance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A Global Information System on Fishes,
  2. 2.
  3. 3.
  4. 4.
    Global Biodiversity Information Facility,
  5. 5.
    Ocean Biogeographic Information System,
  6. 6.
  7. 7.
    Braun, U., Garfinkel, S.L., Holland, D.A., Muniswamy-Reddy, K.-K., Seltzer, M.I.: Issues in automatic provenance collection. In: Moreau, L., Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 171–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Buneman, P., Khanna, S., Tan, W.-C.: Computing provenance and annotations for views (2002)Google Scholar
  9. 9.
    Candela, L., Castelli, D., Ferro, N., Ioannidis, Y., Koutrika, G., Meghini, C., Pagano, P., Ross, S., Soergel, D., Agosti, M., Dobreva, M., Katifori, V., Schuldt, H.: The DELOS Digital Library Reference Model - Foundations for Digital Libraries. In: DELOS: a Network of Excellence on Digital Libraries (February 2008) ISSN 1818-8044, ISBN 2-912335-37-XGoogle Scholar
  10. 10.
    Chapman, A., Jagadish, H.V.: Issues in building practical provenance systemsGoogle Scholar
  11. 11.
    Cheng, X., Pizarro, R., Tong, Y., Zoltick, B., Luo, Q., Weinberger, D.R., Mattay, V.S.: Bio-swarm-pipeline: a light-weight, extensible batch processing system for efficient biomedical data processing. Frontiers in neuroinformatics 3 (2009)Google Scholar
  12. 12.
    Chiew Tan, W.: Research problems in data provenance. IEEE Data Engineering Bulletin 27, 45–52 (2004)Google Scholar
  13. 13.
    Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Transactions on Database Systems 25, 2000 (1997)Google Scholar
  14. 14.
    Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and opportunities. In: Proceedings of ACM SIGMOD, pp. 1345–1350 (2008)Google Scholar
  15. 15.
    Doerr, M., Ore, C.-E., Stead, S.: The CIDOC Conceptual Reference Model - A New Standard for Knowledge Sharing. In: ER (Tutorials, Posters, Panels & Industrial Contributions), pp. 51–56 (2007)Google Scholar
  16. 16.
    Foster, I., Vöckler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for representing, querying, and automating data derivation. In: Proceedings of the 14th Conference on Scientific and Statistical Database Management, pp. 37–46 (2002)Google Scholar
  17. 17.
    Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and using provenance in e-science experiments. Technical report, Journal of Grid Computing (2005)Google Scholar
  18. 18.
    Moreau, L., Freire, J., Futrelle, J., Mcgrath, R.E., Myers, J., Paulson, P.: The open provenance model: An overview. In: Freire, J., Koop, D., Moreau, L. (eds.) IPAW 2008. LNCS, vol. 5272, pp. 323–326. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Ram, S., Liu, J.: Understanding the semantics of data provenance to support active conceptual modeling. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Sahoo, S., Barga, R., Goldstein, J., Sheth, A.: Provenance algebra and materialized view-based provenance management. Technical report, Microsoft Research (2008)Google Scholar
  21. 21.
    Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Record 34, 31–36 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Donatella Castelli
    • 1
  • Leonardo Candela
    • 1
  • Paolo Manghi
    • 1
  • Pasquale Pagano
    • 1
  • Cristina Tang
    • 1
  • Costantino Thanos
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo” – CNRPisaItaly

Personalised recommendations