Advertisement

Scheduling English Football Fixtures over the Holiday Period Using Hyper-heuristics

  • Jonathon Gibbs
  • Graham Kendall
  • Ender Özcan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6238)

Abstract

One of the annual issues that has to be addressed in English football is producing a fixture schedule for the holiday periods that reduces the travel distance for the fans and players. This problem can be seen as a minimisation problem which must abide to the constraints set by the Football Association. In this study, the performance of selection hyper-heuristics is investigated as a solution methodology. Hyper-heuristics aim to automate the process of selecting and combining simpler heuristics to solve computational search problems. A selection hyper-heuristic stores a single candidate solution in memory and iteratively applies selected low level heuristics to improve it. The results show that the learning hyper-heuristics outperform some previously proposed approaches and solutions published by the Football Association.

Keywords

Hyper-heuristic Metaheuristic Local Search Machine Learning Sports Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Denzinger, J., Fuchs, M., Fuchs, M.: High performance atp systems by combining several ai methods. In: Proceedings of the 4th Asia-Pacific Conference on SEAL, IJCAI, pp. 102–107 (1997)Google Scholar
  2. 2.
    Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Timetabling using late acceptance hyper-heuristics. In: Proc. of the IEEE Congress on Evolutionary Computation, pp. 997–1004. IEEE Press, Los Alamitos (2009)CrossRefGoogle Scholar
  3. 3.
    Özcan, E., Bilgin, B., Korkmaz, E.: A comprehensive analysis of hyper-heuristics. In: Intelligent Data Analysis, pp. 3–23 (2008)Google Scholar
  4. 4.
    Özcan, E., Mısır, M., Ochoa, G., Burke, E.K.: A reinforcement learning - great-deluge hyper-heuristic for examination timetabling. International Journal of Applied Metaheuristic Computing 1(1), 39–59 (2010)Google Scholar
  5. 5.
    Bilgin, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and exam timetabling. In: Proceedings of the 6th Practice and Theory of Automated Timetabling (PATAT 2006). LNCS, vol. 3867, pp. 394–412. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer, Dordrecht (2003)Google Scholar
  8. 8.
    Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pp. 529–556. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Kendall, G., Knust, S., Ribeiro, C., Urrutia, S.: Scheduling in sports: An annotated bibliography. Computers & Operations Research 37, 1–19 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)Google Scholar
  11. 11.
    Kendall, G.: Scheduling english football fixtures over holiday periods. Journal of the Operational Research Society 59(6), 743–755 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kendall, G.: Hybridising cplex with simulated annealing to minimise travel distances for english football fixtures (2009) (in review)Google Scholar
  13. 13.
    Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill climbers and mutational heuristics in hyperheuristics. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 202–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Kendall, G., Cowling, P., Soubeiga, E.: Choice function and random hyper-heuristics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution And Learning, SEAL, pp. 667–671 (2002)Google Scholar
  15. 15.
    Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Resende, M.G.C., de Sousa, J.P. (eds.) Metaheuristics: Computer Decision-Making, pp. 523–544. Kluwer, Dordrecht (2003)Google Scholar
  16. 16.
    Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classification of hyper-heuristic approaches. In: Handbook of Metaheuristics. Springer, Heidelberg (to appear, 2010)Google Scholar
  17. 17.
    Wiering, M.: Qv(lambda)-learning: A new on-policy reinforcement learning algorithm. In: Proceedings of the 7th European Workshop on Reinforcement Learning (2005)Google Scholar
  18. 18.
    Aydin, M., Öztemel, E.: Dynamic job-shop scheduling using reinforcement learning agents. In: Robotics and Autonomous Systems, vol. 33, pp. 39–59. Elsevier, Amsterdam (2000)Google Scholar
  19. 19.
    Luiz, A., Ribeiro, C., Costa, A., Bianchi, R.: Heuristic reinforcement learning applied to robocup simulation agents. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World Cup XI. LNCS (LNAI), vol. 5001, pp. 220–227. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, Y., Usher, J.: Application of reinforcement learning for agent-based production scheduling. In: Engineering Applications of Artificial Intelligence, vol. 18, pp. 73–82 (2005)Google Scholar
  21. 21.
    Zhang, W., Dietterich, T.: A reinforcement learning approach to job-shop scheduling. In: Proceedings of the 14th international joint conference on Artificial intelligence, vol. 1, pp. 1114–1120 (1995)Google Scholar
  22. 22.
    Bai, R., Kendall, G.: An investigation of automated planograms using a simulated annealing based hyper-heuristics. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solver. Operations Research/Computer Science Interface Serices, vol. 32, pp. 87–108. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-to record travel. Journal of Computational Physics 104, 86–92 (1993)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kendall, G., Mohamad, M.: Channel assignment optimisation using a hyper-heuristic. In: Proceedings of the 2004 IEEE Conference on Cybernetic and Intelligent Systems (CIS 2004), Singapore, December 1-3, pp. 790–795 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathon Gibbs
    • 1
  • Graham Kendall
    • 1
  • Ender Özcan
    • 1
  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations