A Hyper-Heuristic Approach to Strip Packing Problems

  • Edmund K. Burke
  • Qiang Guo
  • Graham Kendall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6238)


In this paper we propose a genetic algorithm based hyper-heuristic for producing good quality solutions to strip packing problems. Instead of using just a single decoding heuristic, we employ a set of heuristics. This enables us to search a larger solution space without loss of efficiency. Empirical studies are presented on two-dimensional orthogonal strip packing problems which demonstrate that the algorithm operates well across a wide range of problem instances.


Hyper-heuristic Strip Packing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coffman, E., Garey, M., Johnson, D.: Approximation algorithms for bin packing: a survey. In: Hochbaum, D. (ed.) Approximation Algorithms for NP-hard Problems, pp. 46–93. PWS Publishing, Boston (1996)Google Scholar
  2. 2.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: a survey. Eur. J. Oper. Res. 141, 241–252 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Burke, E., Kendall, G. (eds.) Search Methodologies - Introductory Tutorials in Optimization, Search and Decision Support Methodologies, ch. 7, pp. 187–210. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Gendreau, M., Potvin, J.: Tabu search. In: Burke, E., Kendall, G. (eds.) Search Methodologies - Introductory Tutorials in Optimization, Search and Decision Support Methodologies, ch. 6, pp. 165–186. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Sastry, K., Goldberg, D., Kendall, G.: Genetic algorithms. In: Burke, E., Kendall, G. (eds.) Search Methodologies - Introductory Tutorials in Optimization, Search and Decision Support Methodologies, ch. 4, pp. 97–126. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Baker, B., Coffman, E., Rivest, R.: Orthogonal packings in 2 dimensions. SIAM Journal on Computing 9, 846–855 (1980)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Burke, E., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. Journal of Heuristics 9, 451–470 (2003)CrossRefGoogle Scholar
  8. 8.
    Burke, E., Hart, E., Kendall, G., Newall, P., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern research technology. In: Handbook of Metaheuristics, ch. 16, pp. 457–474. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  9. 9.
    Ross, P.: Hyper-heuristics. In: Burke, E., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch. 17, pp. 529–556. Springer Science, Heidelberg (2005)Google Scholar
  10. 10.
    Ross, P., Marín-Blázquez, J.G., Schulenburg, S., Hart, E.: Learning a procedure that can solve hard bin-packing problems: A new GA-based approach to hyper-heuristics. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003, Part II. LNCS, vol. 2724, pp. 1295–1306. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Dowsland, K., Gilbert, M., Kendall, G.: A local search approach to a circle cutting problem arising in the motor cycle industry. J. Oper. Res. Soc. 58, 429–438 (2007)CrossRefGoogle Scholar
  12. 12.
    Ross, P., Schulenburg, S., Marín-Blázquez, J.G., Hart, E.: Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In: Proceedings of Genetic and Evolutionary Computation - GECCO 2002, vol. 6, pp. 942–948 (2002)Google Scholar
  13. 13.
    Fekete, S., Schepers, J.: A combinatorial characterization of higher-dimensional orthogonal packing. Mathematics of Operations Research 29, 353–368 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Wäscher, G., Hauáner, H., Schumann, H.: An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183, 1109–1130 (2007)MATHCrossRefGoogle Scholar
  15. 15.
    Liu, D., Teng, H.: An improved bl-algorithm for genetic algorithm of the orthogonal packing of rectangles. Eur. J. Oper. Res. 112, 413–420 (1999)MATHCrossRefGoogle Scholar
  16. 16.
    El Hayek, J., Moukrim, A., Negre, S.: New resolution algorithm and pretreatments for the two-dimensional bin-packing problem. Computers & Operations Research 35, 3184–3201 (2008)MATHCrossRefGoogle Scholar
  17. 17.
    Burke, E., Kendall, G., Whitwell, G.: A new placement heuristic for the orthogonal stock-cutting problem. Operations Research 52, 655–671 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Hopper, E., Turton, B.: A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artificial Intelligence Review 16, 257–300 (2001)MATHCrossRefGoogle Scholar
  19. 19.
    Alvarez-Valdes, R., Parren̈o, F., Tamarit, J.: Reactive grasp for the strip-packing problem. Computers & Operations Research 35, 1065–1083 (2008)MATHCrossRefGoogle Scholar
  20. 20.
    Burke, E., Kendall, G., Whitwell, G.: A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock Cutting Problem. INFORMS Journal on Computing 21(3), 505–516 (2009)CrossRefGoogle Scholar
  21. 21.
    Dowsland, K., Herbert, E., Kendall, G., Burke, E.: Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems. Eur. J. Oper. Res. 168, 390–402 (2006)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Edmund K. Burke
    • 1
  • Qiang Guo
    • 1
  • Graham Kendall
    • 1
  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUnited Kingdom

Personalised recommendations