Advertisement

Threshold Selection, Mitosis and Dual Mutation in Cooperative Co-evolution: Application to Medical 3D Tomography

  • Franck P. Vidal
  • Evelyne Lutton
  • Jean Louchet
  • Jean-Marie Rocchisani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6238)

Abstract

We present and analyse the behaviour of specialised operators designed for cooperative coevolution strategy in the framework of 3D tomographic PET reconstruction. The basis is a simple cooperative co-evolution scheme (the “fly algorithm”), which embeds the searched solution in the whole population, letting each individual be only a part of the solution. An individual, or fly, is a 3D point that emits positrons. Using a cooperative co-evolution scheme to optimize the position of positrons, the population of flies evolves so that the data estimated from flies matches measured data. The final population approximates the radioactivity concentration. In this paper, three operators are proposed, threshold selection, mitosis and dual mutation, and their impact on the algorithm efficiency is experimentally analysed on a controlled test-case. Their extension to other cooperative co-evolution schemes is discussed.

Keywords

Positron Emission Tomography Threshold Selection Mutation Variance Adaptive Mutation Initial Population Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Vidal, F.P., Lazaro-Ponthus, D., Legoupil, S., Louchet, J., Lutton, E., Rocchisani, J.: Artificial evolution for 3D PET reconstruction. In: Collet, P., Legrand, P. (eds.) EA 2009. LNCS, vol. 5975, pp. 37–48. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Vidal, F.P., Louchet, J., Lutton, E., Rocchisani, J.M.: PET reconstruction using a cooperative coevolution strategy in LOR space. In: IEEE Nuclear Science Symposium Conference Record, Orlando, Florida, pp. 3363–3366. IEEE, Los Alamitos (October 2009)Google Scholar
  4. 4.
    Vidal, F.P., Louchet, J., Rocchisani, J.M., Lutton, E.: New genetic operators in the fly algorithm: application to medical PET image reconstruction. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 292–301. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Zeng, G.L.: Image reconstruction – a tutorial. Comput. Med. Imaging Graph. 25(2), 97–103 (2001)CrossRefGoogle Scholar
  6. 6.
    Louchet, J.: Stereo analysis using individual evolution strategy. In: Proc. ICPR 2000, p. 1908 (2000)Google Scholar
  7. 7.
    Vandenberghe, S., D’Asseler, Y., Van de Walle, R., Kauppinen, T., Koole, M., Bouwens, L., Van Laere, K., Lemahieu, I., Dierckx, R.A.: Iterative reconstruction algorithms in nuclear medicine. Comput. Med. Imaging Graph. 25, 105–111 (2001)CrossRefGoogle Scholar
  8. 8.
    Barriere, O., Lutton, E.: Experimental analysis of a variable size mono-population cooperative-coevolution strategy. In: Proc. NICSO 2008 (2008)Google Scholar
  9. 9.
    Baeck, T., Fogel, D.B., Michalewicz, Z. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. Taylor & Francis, Abington (2000)zbMATHGoogle Scholar
  10. 10.
    Rosenberg, S.M.: Evolving responsively: adaptive mutation. Nat. Rev. Genet. 2, 504–515 (2001)CrossRefGoogle Scholar
  11. 11.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE T. Evolut. Comput. 3(2), 124–141 (1999)CrossRefGoogle Scholar
  12. 12.
    Bäck, T., Schwefel, H.P.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)CrossRefGoogle Scholar
  13. 13.
    Chellapilla, K.: Combining mutation operators in evolutionary programming. IEEE T. Evolut. Comput. 2(3), 91–96 (1998)CrossRefGoogle Scholar
  14. 14.
    Ochoa, G.: Setting the mutation rate: Scope and limitations of the 1/L heuristic. In: Proc. GECCO 2002, pp. 495–502. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  15. 15.
    Lis, J.M., Orlowska-Kowalska, T.: Application of evolutionary algorithms with adaptive mutation to the identification of induction motor parameters at standstill. In: Proc. EUROCON 2007, pp. 1786–1791 (2007)Google Scholar
  16. 16.
    Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the performance of a simple ES. In: Proc. CEC 2006, pp. 16–21 (2006)Google Scholar
  17. 17.
    Schwefel, H.P.: Numerical optimization of computer models. Wiley, Chichester (1981)zbMATHGoogle Scholar
  18. 18.
    Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the First European Conference on Artificial Life, pp. 263–271. MIT Press, Cambridge (1992)Google Scholar
  20. 20.
    Collet, P., Lutton, E., Louchet, J.: Issues on the optimisation of evolutionary algorithm code. In: Proc. CEC 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Franck P. Vidal
    • 1
  • Evelyne Lutton
    • 2
  • Jean Louchet
    • 3
  • Jean-Marie Rocchisani
    • 4
  1. 1.Department of Radiation OncologyUniversity of CaliforniaSan Diego
  2. 2.AVIZ teamINRIA - Saclay-Île-de-FranceOrsayFrance
  3. 3.ArteniaChâtillonFrance
  4. 4.UFR SMBH & Avicenne hospitalParis XIII UniversityBobignyFrance

Personalised recommendations