Abstract

An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms, to be derived from simple conditions on the one-step behaviour of their variation operators and selection mechanisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)Google Scholar
  2. 2.
    Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Haccou, P., Jagers, P., Vatutin, V.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge (2005)MATHCrossRefGoogle Scholar
  4. 4.
    Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 14(3), 502–525 (1982)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kolotilina, L.Y.: Bounds and inequalities for the Perron root of a nonnegative matrix. Journal of Mathematical Sciences 121(4), 2481–2507 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lehre, P.K., Yao, X.: On the impact of the mutation-selection balance on the runtime of evolutionary algorithms. In: Proc. of FOGA 2009, pp. 47–58. ACM, New York (2009)CrossRefGoogle Scholar
  8. 8.
    Minc, H.: On the maximal eigenvector of a positive matrix. SIAM Journal on Numerical Analysis 7(3), 424–427 (1970)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proc. of GECCO 2009, pp. 835–842. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Sasaki, G.H., Hajek, B.: The time complexity of maximum matching by simulated annealing. Journal of the ACM 35(2), 387–403 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Seneta, E.: Non-Negative Matrices. George Allen & Unwin Ltd., London (1973)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Per Kristian Lehre
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations