Advertisement

Abstract

An important step in gaining a better understanding of the stochastic dynamics of evolving populations, is the development of appropriate analytical tools. We present a new drift theorem for populations that allows properties of their long-term behaviour, e.g. the runtime of evolutionary algorithms, to be derived from simple conditions on the one-step behaviour of their variation operators and selection mechanisms.

Keywords

Random Walk Selection Mechanism Reproductive Rate Search Point Family Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cantú-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)Google Scholar
  2. 2.
    Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Haccou, P., Jagers, P., Vatutin, V.: Branching Processes: Variation, Growth, and Extinction of Populations. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Advances in Applied Probability 14(3), 502–525 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kolotilina, L.Y.: Bounds and inequalities for the Perron root of a nonnegative matrix. Journal of Mathematical Sciences 121(4), 2481–2507 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lehre, P.K., Yao, X.: On the impact of the mutation-selection balance on the runtime of evolutionary algorithms. In: Proc. of FOGA 2009, pp. 47–58. ACM, New York (2009)CrossRefGoogle Scholar
  8. 8.
    Minc, H.: On the maximal eigenvector of a positive matrix. SIAM Journal on Numerical Analysis 7(3), 424–427 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Proc. of GECCO 2009, pp. 835–842. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Sasaki, G.H., Hajek, B.: The time complexity of maximum matching by simulated annealing. Journal of the ACM 35(2), 387–403 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Seneta, E.: Non-Negative Matrices. George Allen & Unwin Ltd., London (1973)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Per Kristian Lehre
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations