General Scheme for Analyzing Running Times of Parallel Evolutionary Algorithms

  • Jörg Lässig
  • Dirk Sudholt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6238)

Abstract

We present new methods for the running time analysis of parallel evolutionary algorithms with spatially structured populations. These methods are applied to estimate the speed-up gained by parallelization in pseudo-Boolean optimization. The possible speed-up increases with the density of the topology. Surprisingly, even sparse topologies like ring graphs lead to a significant speed-up for many functions while not increasing the total number of function evaluations. We also give practical hints towards choosing the minimum number of processors that gives an optimal speed-up.

Keywords

Parallel evolutionary algorithms runtime analysis island model spatial structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nedjah, N., de Macedo Mourelle, L.: Parallel Evolutionary Computations. Springer, Heidelberg (2006)MATHCrossRefGoogle Scholar
  2. 2.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time. Springer, Heidelberg (2005)MATHGoogle Scholar
  3. 3.
    Cantú Paz, E.: A survey of parallel genetic algorithms. Technical report, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana Champaign, Urbana, IL (1997)Google Scholar
  4. 4.
    Rudolph, G.: Takeover time in parallel populations with migration. In: BIOMA 2006, pp. 63–72 (2006)Google Scholar
  5. 5.
    Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In: Sarker, R., Yao, X., Mohammadian, M. (eds.) Evolutionary Optimization, pp. 349–369. Kluwer, Dordrecht (2002)Google Scholar
  6. 6.
    Lässig, J., Sudholt, D.: The benefit of migration in parallel evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2010, pp. 1105–1112. ACM, New York (2010)Google Scholar
  7. 7.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    He, J., Yao, X.: A study of drift analysis for estimating computation time of evolutionary algorithms. Natural Computing 3(1), 21–35 (2004)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jörg Lässig
    • 1
  • Dirk Sudholt
    • 1
  1. 1.International Computer Science InstituteBerkeleyUSA

Personalised recommendations