Advertisement

An Archive Maintenance Scheme for Finding Robust Solutions

  • Johannes Kruisselbrink
  • Michael Emmerich
  • Thomas Bäck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6238)

Abstract

This paper presents an archive maintenance scheme that can be used within an evaluation scheme for finding robust optima when dealing with expensive objective functions. This archive maintenance scheme aims to select the additional sampling points such that locally well-spread distributions of archive points will be generated. By doing so, the archive will contain better predictive information about the robustness of candidate solutions. Experiments on 10D test problems show that this scheme can be used for accurate local search for robust solutions.

Keywords

Evaluation Scheme Robust Solution Latin Hypercube Sampling Objective Function Evaluation Metamodeling Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, H.-G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4), 239–267 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beyer, H.-G., Sendhoff, B.: Evolution strategies for robust optimization. In: IEEE Congress on Evolutionary Computation, pp. 1346–1353 (2006)Google Scholar
  3. 3.
    Branke, J.: Creating robust solutions by means of evolutionary algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 119–128. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Branke, J.: Reducing the sampling variance when searching for robust solutions. In: Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 235–242 (2001)Google Scholar
  5. 5.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  6. 6.
    McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)CrossRefGoogle Scholar
  7. 7.
    Ong, Y.-S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Transactions on Evolutionary Computation 10(4), 392–404 (2006)CrossRefGoogle Scholar
  8. 8.
    Paenke, I., Branke, J., Jin, Y.: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation. IEEE Transactions on Evolutionary Computation 10(4), 405–420 (2006)CrossRefGoogle Scholar
  9. 9.
    Tsutsui, S.: A comparative study on the effects of adding perturbations to phenotypic parameters in genetic algorithms with a robust solution searching scheme. In: IEEE Systems, Man, and Cybernetics Conference (SMC 1999), pp. 585–591 (1999)Google Scholar
  10. 10.
    Tsutsui, S., Ghosh, A.: Genetic algorithms with a robust solution searching scheme. IEEE Transactions on Evolutionary Computation 1(3), 201–208 (1997)CrossRefGoogle Scholar
  11. 11.
    Tsutsui, S., Ghosh, A.: Effects of adding perturbations to phenotypic parameters in genetic algorithms for searching robust solutions. In: Advances in evolutionary computing: theory and applications, pp. 351–365 (2003)Google Scholar
  12. 12.
    Wiesmann, D., Hammel, U., Bäck, T.: Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 2, 162–167 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Johannes Kruisselbrink
    • 1
  • Michael Emmerich
    • 1
  • Thomas Bäck
    • 1
  1. 1.LIACSLeiden UniversityLeiden

Personalised recommendations