Advertisement

An Alternative Approach to the Revision of Ordinal Conditional Functions in the Context of Multi-Valued Logic

  • Klaus Häming
  • Gabriele Peters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6353)

Abstract

We discuss the use of Ordinal Conditional Functions (OCF) in the context of Reinforcement Learning while introducing a new revision operator for conditional information. The proposed method is compared to the state-of-the-art method in a small Reinforcement Learning application with added futile information, where generalization proves to be advantageous.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alchourron, C.E., Gardenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symbolic Logic 50(2), 510–530 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artificial intelligence 89, 1–29 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Machine Learning 43, 7–52 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Kern-Isberner, G.: Conditionals in nonmonotonic reasoning and belief revision: considering conditionals as agents. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Leopold, T., Kern Isberner, G., Peters, G.: Combining reinforcement learning and belief revision: A learning system for active vision. In: BMVC 2008, pp. 473–482 (2008)Google Scholar
  6. 6.
    Reber, A.S.: Implicit learning and tacit knowledge. Journal of Experimental Psycology: General 3(118), 219–235 (1989)CrossRefGoogle Scholar
  7. 7.
    Spohn, W.: Ordinal conditional functions: A dynamic theory of epistemic states. In: Causation in Decision, Belief Change and Statistics, pp. 105–134 (August 1988)Google Scholar
  8. 8.
    Sun, R., Merrill, E., Peterson, T.: From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science 25, 203–244 (2001)CrossRefGoogle Scholar
  9. 9.
    Sun, R., Zhang, X., Slusarz, P., Mathews, R.: The interaction of implicit learning, explicit hypothesis testing, and implicit-to-explicit knowledge extraction. Neural Networks 1(20), 34–47 (2006)Google Scholar
  10. 10.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  11. 11.
    Ye, C., Yung, N.H.C., Wang, D.: A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance. IEEE Transactions on Systems, Man, and Cybernetics, Part B 33(1), 17–27 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Klaus Häming
    • 1
  • Gabriele Peters
    • 1
  1. 1.Computer Science, Visual ComputingUniversity of Applied Sciences and ArtsDortmundGermany

Personalised recommendations