Advertisement

Fault Prognosis of Mechanical Components Using On-Line Learning Neural Networks

  • David Martínez-Rego
  • Oscar Fontenla-Romero
  • Beatriz Pérez-Sánchez
  • Amparo Alonso-Betanzos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6352)

Abstract

Predictive maintenance of industrial machinery has steadily emerge as an important topic of research. Due to an accurate automatic diagnosis and prognosis of faults, savings of the current expenses devoted to maintenance can be obtained. The aim of this work is to develop an automatic prognosis system based on vibration data. An on-line version of the Sensitivity-based Linear Learning Model algorithm for neural networks is applied over real vibrational data in order to assess its forecasting capabilities. Moreover, the behavior of the method is compared with that of an efficient and fast method, the On-line Sequential Extreme Learning Machine. The accurate predictions of the proposed method pave the way for future development of a complete prognosis system.

Keywords

Root Mean Square Hide Neuron Mechanical Component Vibration Data Predictive Maintenance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wegerich, S.: Similarity-based modeling of vibration features for fault detection and identification. Sensor Review 25(2), 114–122 (2005)CrossRefGoogle Scholar
  2. 2.
    Ericsson, S., Gripp, N., Jihansson, E., Persson, L., Sjøberg, R., Strømberg, J.: Towards automatic detection of local bearing defects in rotating machines. Mechanical Systemas and Signal Processing 19, 509–535 (2005)CrossRefGoogle Scholar
  3. 3.
    Sakthivel, N.R., Sugumaran, V., Babudevasenapati, S.: Vibration based fault diagnosis of monoblock centrifugal pump using decision tree. Expert Systems with Applications 37, 4040–4049 (2010)CrossRefGoogle Scholar
  4. 4.
    Pham, H.T., Tran, V.T., Yang, B.: A hybrid nonlinear autoregressive model with exogenous input and autoregressive moving average model for long-term machine state forecasting. Expert Systems with Applications 37, 3310–3317 (2010)CrossRefGoogle Scholar
  5. 5.
    Goebel, K., Bonanni, P., Eklund, N.: Towards an integrated reasoner for bearings pronostics. In: IEEE Aerospace Conference, pp. 3647–3657 (2005)Google Scholar
  6. 6.
    Lee, J., Qiu, H., Yu, G., Lin, J.: Rexnord Technical Services: Bearing Data Set, IMS, Univ. of Cincinnati. NASA Ames Prognostics Data Repository (2007), http://ti.arc.nasa.gov/project/prognostic-data-repository
  7. 7.
    Liang, N.-Y., Huang, G.-B., Saratchandran, P., Sundararajan, N.: A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. on Neural Networks 17, 1411–1423 (2006)CrossRefGoogle Scholar
  8. 8.
    Qiu, H., Lee, J., Lin, J.: Wavelet filter-based weak signature detection method and its application on roller bearing prognostics. Journal of Sound and Vibration 289, 1066–1090 (2006)CrossRefGoogle Scholar
  9. 9.
    Pérez-Sánchez, B., Fontenla-Romero, O., Guijarro-Berdiñas, B.: An Incremental Learning Method for Neural Networks Based on Sensitivity Analysis. In: Proc. of the XIII Conferencia de la Asociación Española para la Inteligencia Artificial, Sevilla, Spain, pp. 529–537 (2009)Google Scholar
  10. 10.
    Castillo, E., Fontenla-Romero, O., Alonso-Betanzos, A., Guijarro-Berdiñas, B.: A Global Optimum Approach for One-Layer Neural Networks. Neural Computation 14, 1429–1449 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Tse, P.W., Atherton, D.P.: Prediction of machine deterioration using vibration based fault trends and recurrent neural networks. Journal of Vibration and Accoustics 121, 355–362 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Martínez-Rego
    • 1
  • Oscar Fontenla-Romero
    • 1
  • Beatriz Pérez-Sánchez
    • 1
  • Amparo Alonso-Betanzos
    • 1
  1. 1.Laboratory for Research and Development in Artificial Intelligence (LIDIA), Department of Computer Science, Faculty of InformaticsUniversity of A CoruñaA CoruñaSpain

Personalised recommendations