Point Source Digital In-Line Holographic Microscopy

Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 46)

Abstract

Point source digital in-line holography with numerical reconstruction has been developed into a new microscopy, specifically for microfluidic and biological applications, that routinely achieves both lateral and depth resolution at the submicron level in 3-D imaging. This review will cover the history of this field and give details of the theoretical and experimental background. Numerous examples from microfluidics and biology will demonstrate the capabilities of this new microscopy. The motion of many objects such as living cells in water can be tracked in 3-D at subsecond rates. Microfluidic applications include sedimentation of suspensions, fluid motion around micron-sized objects in channels, motion of spheres, and formation of bubbles. Immersion DIHM will be reviewed which effectively does holography in the UV. Lastly, a submersible version of the microscope will be introduced that allows the in situ study of marine life in real time in the ocean and shows images and films obtained in sea trials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Gabor, A new microscopic principle. Nature (London)161, 777–778 (1948)CrossRefADSGoogle Scholar
  2. 2.
    E.N. Leith, J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962); ibid. 53, 1377 (1963); ibid. 54, 1295 (1963)CrossRefADSGoogle Scholar
  3. 3.
    J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)CrossRefADSGoogle Scholar
  4. 4.
    P. Hariharan, Optical Holography (Cambridge University Press, Cambridge, 1996)Google Scholar
  5. 5.
    T. Kreis, Holographic Interferometry (Akademie Verlag, Berlin, 1996)Google Scholar
  6. 6.
    D. Gabor, Microscopy by reconstructed wavefronts. Proc. R. Soc. London, Ser. A 197, 454 (1949)MATHCrossRefADSGoogle Scholar
  7. 7.
    Y. Aoki, Optical and numerical reconstruction of images from sound-wave holograms. IEEE Trans. Acoust. Speech AU-18, 258 (1970)Google Scholar
  8. 8.
    M.A. Kronrod, L.P. Yaroslavski, N.S. Merzlyakov, Computer synthesis of transparency holograms. Sov. Phys. Tech. Phys-U (USA) 17, 329 (1972)ADSGoogle Scholar
  9. 9.
    T.H. Demetrakopoulos, R. Mittra, Digital and optical reconstruction of images from suboptical diffraction patterns. Appl. Opt. 13, 665 (1974)CrossRefADSGoogle Scholar
  10. 10.
    L. Onural, P.D. Scott, Digital decoding of in-line holograms. Opt. Eng. 26, 1124 (1987)ADSGoogle Scholar
  11. 11.
    G. Liu, P.D. Scott, Phase retrieval and twin-image elimination for in-line Fresnel holograms. J. Opt. Soc. Am. A 4, 159 (1987)CrossRefADSGoogle Scholar
  12. 12.
    L. Onural, M.T. Oezgen, Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis. J. Opt. Soc. Am. A 9, 252 (1992)CrossRefADSGoogle Scholar
  13. 13.
    H.J. Kreuzer, R.P. Pawlitzek, LEEPS, Version 1.2, A software package for the simulation and reconstruction of low energy electron point source images and other holograms (1993–1998)Google Scholar
  14. 14.
    H.-W. Fink, Point source for electrons and ions. IBM J. Res. Dev. 30, 460 (1986)CrossRefGoogle Scholar
  15. 15.
    H.-W. Fink, Point source for electrons and ions. Phys. Scripta 38, 260 (1988)CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    W. Stocker, H.-W. Fink, R. Morin, Low-energy electron and ion projection microscopy. Ultramicroscopy 31, 379 (1989)CrossRefGoogle Scholar
  17. 17.
    H.-W. Fink, W. Stocker, H. Schmid, Holography with low-energy electrons. Phys. Rev. Lett. 65, 1204 (1990)CrossRefADSGoogle Scholar
  18. 18.
    H.-W. Fink, H. Schmid, H.J. Kreuzer, A. Wierzbicki, Atomic resolution in lens-less low-energy electron holography. Phys. Rev. Lett. 67, 15 (1991)CrossRefGoogle Scholar
  19. 19.
    H.J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, Theory of the point source electron microscope. Ultramicroscopy 45, 381 (1992)CrossRefGoogle Scholar
  20. 20.
    H.-W. Fink, H. Schmid, H.J. Kreuzer, In: Electron Holography, eds. by A. Tonomura, L.F. Allard, D.C. Pozzi, D.C. Joy, Y.A. Ono, State of the Art of Low-Energy Electron Holography, (Elsevier, Amsterdam, 1995), pp. 257–266CrossRefGoogle Scholar
  21. 21.
    H.-W. Fink, ,H. Schmid, E. Ermantraut, and T. Schulz, Electron holography of individual DNA molecules, J. Opt. Soc. Am. A 14, 2168 (1997)CrossRefADSGoogle Scholar
  22. 22.
    A. Gölzhäuser, B. Völkel, B. Jäger, M. Zharnikov, H.J. Kreuzer, M. Grunze, Holographic imaging of macromolecules. J. Vac. Sci. Technol. A 16, 3025 (1998)CrossRefADSGoogle Scholar
  23. 23.
    H. Schmid, H.-W. Fink, H.J. Kreuzer, In-line holography using low-energy electrons and photons; applications for manipulation on a nanometer scale. J. Vac. Sci. Technol. B 13, 2428 (1995)CrossRefGoogle Scholar
  24. 24.
    H.J. Kreuzer, H.-W. Fink, H. Schmid, S. Bonev, Holography of holes, with electrons and photons. J. Microsc. 178, 191 (1995)Google Scholar
  25. 25.
    H.J. Kreuzer, Low energy electron point source microscopy. Micron 26, 503 (1995)CrossRefGoogle Scholar
  26. 26.
    H.J. Kreuzer, N. Pomerleau, K. Blagrave, M.H. Jericho, Digital in-line holography with numerical reconstruction. Proc. SPIE. 3744, 65 (1999)CrossRefADSGoogle Scholar
  27. 27.
    M. Born, E. Wolf. Principles of Optics (Cambridge University Press, Cambridge, 2006)Google Scholar
  28. 28.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, P. Klages, H.J. Kreuzer. Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006)CrossRefADSGoogle Scholar
  29. 29.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, P. Klages, H.J. Kreuzer. Resolution power in digital holography, in ICO20: Optical Information Processing; Y. Sheng, S. Z, Y. Zhang (eds.), Proc. SPIE 6027, 637–644 (2006)Google Scholar
  30. 30.
    S.K. Jericho, J. Garcia-Sucerquia, Wenbo Xu, M.H. Jericho, H.J. Kreuzer. A submersible digital in-line holographic microscope. Rev. Sci. Instr. 77, 043706 1–10 (2006)Google Scholar
  31. 31.
    H.J. Kreuzer, M.H. Jericho, Wenbo Xu, Digital in-line holography with numerical reconstruction: three-dimensional particle tracking. Proc. SPIE 4401, 234, 2001CrossRefADSGoogle Scholar
  32. 32.
    W. Xu, M.H. Jericho, I.A. Meinertzhagen, H.J. Kreuzer, Tracking particles in 4-D with in-line holographic microscopy. Opt. Lett. 28, 164 (2003)CrossRefADSGoogle Scholar
  33. 33.
    H.J. Kreuzer, M.H. Jericho, I.A. Meinertzhagen, W. Xu, Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms. Proc. SPIE 5005–17, 299 (2003)CrossRefGoogle Scholar
  34. 34.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, I. Tamblyn, H.J. Kreuzer, Digital in-line holography: 4-D imaging and tracking of micro-structures and organisms in microfluidics and biology, in ICO20: Biomedical Optics, G. von Bally, Q. Luo (eds.), Proc. SPIE 6026, 267–275 (2006)Google Scholar
  35. 35.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, H.J. Kreuzer, Digital in-line holography applied to microfluidic studies, in Microfluidics, BioMEMS, and Medical Microsystems IV; I. Papautsky, W. Wang (eds.), Proc. SPIE 6112, 175–184 (2006)Google Scholar
  36. 36.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, H.J. Kreuzer, 4-D imaging of fluid flow with digital in-line holographic microscopy. Optik 119, 419–423 (2008)ADSGoogle Scholar
  37. 37.
    J. Garcia-Sucerquia, D. Alvarez-Palacio, J. Kreuzer. Digital In-line Holographic Microscopy of Colloidal Systems of Microspheres, in Adaptive Optics: Analysis and Methods/Computational Optical Sensing. Meetings on CD-ROM OSA Technical Digest (CD) (Optical Society of America, 2007), paper DMB4Google Scholar
  38. 38.
    Wenbo Xu, M.H. Jericho, I.A. Meinertzhagen, H.J. Kreuzer, Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA 98, 11301 (2001)CrossRefADSGoogle Scholar
  39. 39.
    N.I. Lewis, A.D. Cemballa, W. Xu, M.H. Jericho, H.J. Kreuzer, Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium, in: Ed. by Bates, S.S. Proceedings of the Eighth Canadian Workshop on Harmful Marine. Algae. Can. Tech. Rep. Fish. Aquat. Sci. 2498: xi + 141, pp. 80–87 (2003)Google Scholar
  40. 40.
    N.I. Lewis, A.D. Cembella, W. Xu, M.H. Jericho, H.J. Kreuzer. Swimming speed of three species of the marine dinoflagellate Alexandrium as determined by digital in-line holography. Phycologia 45, 61–70 (2006)CrossRefGoogle Scholar
  41. 41.
    L. Repetto, E. Piano, C. Pontiggia. Lensless digital holographic microscope with light-emitting diode illumination. Opt. Lett. 29 (10), 1132–1134 (2004)CrossRefADSGoogle Scholar
  42. 42.
    J. Garcia-Sucerquia, D. Alvarez-Palacio, H.J. Kreuzer, Partially coherent digital in-line holographic microscopy. OSA/DH/FTS/HISE/NTM/OTA (2009).Google Scholar
  43. 43.
    P. Petruck, R. Riesenberg, M. Kanka, U. Huebner, Partially coherent illumination and application to holographic microscopy, in 4th EOS Topical Meeting on Advanced Imaging Techniques Conference 2009, pp. 71–72, (2009)Google Scholar
  44. 44.
    P. Petruck, R. Riesenberg, R. Kowarschik, Sensitive measurement of partial coherence using a pinhole array, in Proceedings OPTO Sensor+Test’, pp. 35–40 (2009)Google Scholar
  45. 45.
    M. Kanka, R. Riesenberg, H.J. Kreuzer, Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34 (8), 1162–1164 (2009). doi:10.1364/OL.34.001162CrossRefADSGoogle Scholar
  46. 46.
    M. Kanka, A. Wuttig, C. Graulig, R. Riesenberg, Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit. Opt. Lett. 35(2), 217–219 (2010)CrossRefADSGoogle Scholar
  47. 47.
    R. Riesenberg, M. Kanka, J. Bergmann, Coherent light microscopy with a multi-spot source, in T. Wilson, (ed.), Proc. SPIE, 66300I, (2007)Google Scholar
  48. 48.
    M. Kanka, R. Riesenberg, Wide field holographic microscopy with pinhole arrays, in Proceedings of OPTO Sensor+Test, pp. 69–72, (2006)Google Scholar
  49. 49.
    R. Riesenberg, A. Wuttig, Pinhole-array and lensless micro-imaging with interferograms, Proceedings of DGaO, 106. Conference, pp. A26, (2005)Google Scholar
  50. 50.
    A. Grjasnow, R. Riesenberg, A. Wuttig, Phase reconstruction by multiple plane detection for holographic microscopy, in T. Wilson, (ed.), Proc. SPIE, 66300 J, (2007)Google Scholar
  51. 51.
    A. Grjasnow, R. Riesenberg, A. Wuttig, Lenseless coherent imaging by multi-plane interference detection, in Proceedings of DGaO, 106. Conference, pp. A39, (2005)Google Scholar
  52. 52.
    A. Grjasnow, A. Wuttig, R. Riesenberg, Phase resolving microscopy by multi-plane diffraction detection. J. Microsc. 231(1), 115–123 (2008)CrossRefMathSciNetGoogle Scholar
  53. 53.
    M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M.E. Callow, J.A. Callow, Digital in-line hologrpahy as a three-dimensional tool to study motile marine organisms during thier exploration of surfaces. J. Adhes. 83, 417–430 (2007)CrossRefGoogle Scholar
  54. 54.
    M. Heydt, P. Divos, M. Grunze, A. Rosenhahn, Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur. Phys. J.E. 30, 141–148 (2009)CrossRefGoogle Scholar
  55. 55.
    A. Rosenhahn, S. Schilp1, H.J. Kreuzer, M. Grunze, The role of inert surface chemistry in marine biofouling prevention. Phys. Chem.Chem. Phys. 12, 4275–4286 (2010). doi: 10.1039/C001968MGoogle Scholar
  56. 56.
    H.J. Kreuzer, Holographic microscope and method of hologram reconstruction US. Patent 6411406 B1, (Canadian patent CA 2376395) 25 June, (2002)Google Scholar
  57. 57.
    DIHM software package, copyright Resolution Optics Inc. Halifax, see also resolutionoptics.com for further informationGoogle Scholar
  58. 58.
    S.K. Jericho, P. Klages, J. Nadeau, E.M. Dumas, M.H. Jericho, H.J. Kreuzer, In-line digital holographic microscopy for terrestrial and exobiological research, Planetary and Space Science 58, 701–705 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada
  2. 2.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations