Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems

  • Vincenzo Bonifaci
  • Alberto Marchetti-Spaccamela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6347)

Abstract

We give the first algorithm for testing the feasibility of a system of sporadic real-time tasks on a set of identical processors, solving an open problem in the area of multiprocessor real-time scheduling [S. Baruah and K. Pruhs, Journal of Scheduling, 2009]. We also investigate the related notion of schedulability and a notion that we call online feasibility. Finally, we show that discrete-time schedules are as powerful as continuous-time schedules, which answers another open question in the above mentioned survey.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task systems. In: Son, S.H., Lee, I., Leung, J.Y.T. (eds.) Handbook of Real-Time and Embedded Systems,  ch. 3. CRC Press, Boca Raton (2007)Google Scholar
  2. 2.
    Baker, T.P., Cirinei, M.: Brute-force determination of multiprocessor schedulability for sets of sporadic hard-deadline tasks. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 62–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Baruah, S.K., Cohen, N.K., Plaxton, C.G., Varvel, D.A.: Proportionate progress: A notion of fairness in resource allocation. Algorithmica 15(6), 600–625 (1996), http://www.springerlink.com/content/xy72c891q4pn6e0b/ MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baruah, S.K., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity. In: Leung, J.Y.T. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis,  ch. 28. CRC Press, Boca Raton (2003)Google Scholar
  5. 5.
    Baruah, S.K., Pruhs, K.: Open problems in real-time scheduling. Journal of Scheduling (2009) doi:10.1007/s10951-009-0137-5Google Scholar
  6. 6.
    Baruah, S.K., Rosier, L.E., Howell, R.R.: Algorithms and complexity concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time Systems 2(4), 301–324 (1990)CrossRefGoogle Scholar
  7. 7.
    Dertouzos, M.L.: Control robotics: The procedural control of physical processes. In: Proc. IFIP Congress. pp. 807–813 (1974)Google Scholar
  8. 8.
    Diestel, R.: Graph theory, 3rd edn. Springer, Heidelberg (2005), http://diestel-graph-theory.com/Contents3.pdf MATHGoogle Scholar
  9. 9.
    Eisenbrand, F., Rothvoß, T.: EDF-schedulability of synchronous periodic task systems is coNP-hard. In: Proc. 21st Symp. on Discrete Algorithms. pp. 1029–1034 (2010), http://www.siam.org/proceedings/soda/2010/SODA10_083_eisenbrandf.pdf
  10. 10.
    Fisher, N., Goossens, J., Baruah, S.K.: Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Tech. Rep. 09–009, University of North Carolina at Chapel Hill, Department of Computer Science, Chapel Hill, NC (2009)Google Scholar
  11. 11.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)MATHGoogle Scholar
  12. 12.
    Horn, W.A.: Some simple scheduling algorithms. Naval Research Logistics Quarterly 21, 177–185 (1974)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM 20(1), 46–61 (1973)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied Logic 65(2), 149–184 (1993)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29(2), 274–301 (1984)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. Journal of Computer and Systems Sciences 4(2), 177–192 (1970)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Vincenzo Bonifaci
    • 1
  • Alberto Marchetti-Spaccamela
    • 2
  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany
  2. 2.Sapienza Università di RomaRomeItaly

Personalised recommendations