Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness

  • Kshipra Bhawalkar
  • Martin Gairing
  • Tim Roughgarden
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6347)


We characterize the price of anarchy in weighted congestion games, as a function of the allowable resource cost functions. Our results provide as thorough an understanding of this quantity as is already known for nonatomic and unweighted congestion games, and take the form of universal (cost function-independent) worst-case examples. One noteworthy byproduct of our proofs is the fact that weighted congestion games are “tight”, which implies that the worst-case price of anarchy with respect to pure Nash, mixed Nash, correlated, and coarse correlated equilibria are always equal (under mild conditions on the allowable cost functions). Another is the fact that, like nonatomic but unlike atomic (unweighted) congestion games, weighted congestion games with trivial structure already realize the worst-case POA, at least for polynomial cost functions.

We also prove a new result about unweighted congestion games: the worst-case price of anarchy in symmetric games is, as the number of players goes to infinity, as large as in their more general asymmetric counterparts.


Cost Function Nash Equilibrium Congestion Game Pure Nash Equilibrium Symmetric Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM Journal on Computing 38(4), 1602–1623 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Epstein, A.: Large the price of routing unsplittable flow. In: STOC, pp. 57–66 (2005)Google Scholar
  4. 4.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont (1997)Google Scholar
  5. 5.
    Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I. LNCS, vol. 4051, pp. 311–322. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Christodoulou, G., Koutsoupias, E.: On the price of anarchy and stability of correlated equilibria of linear congestion games. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 59–70. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: STOC, pp. 67–73 (2005)Google Scholar
  8. 8.
    Fotakis, D.: Congestion games with linearly independent paths: Convergence time and price of anarchy. In: Monien, B., Schroeder, U.-P. (eds.) SAGT 2008. LNCS, vol. 4997, pp. 33–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S.C., Spirakis, P.G.: Atomic congestion games among coalitions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I. LNCS, vol. 4051, pp. 572–583. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gairing, M., Schoppmann, F.: Total latency in singleton congestion games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 381–387. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Harks, T., Klimm, M.: On the existence of pure nash equilibria in weighted congestion games. In: ICALP (2010)Google Scholar
  12. 12.
    Hayrapetyan, A., Tardos, É., Wexler, T.: The effect of collusion in congestion games. In: STOC, pp. 89–98 (2006)Google Scholar
  13. 13.
    Holzman, R., Law-Yone, N.: Network structure and strong equilibrium in route selection games. Mathematical Social Sciences 46, 193–205 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. In: STACS 2004, TCS 2008, vol. 406(3), pp. 187–206 (2008)Google Scholar
  16. 16.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14(1), 124–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2(1), 65–67 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Roughgarden, T.: The price of anarchy is independent of the network topology. Journal of Computer and System Sciences 67(2), 341–364 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Roughgarden, T.: Potential functions and the inefficiency of equilibria. In: Proceedings of the ICM, vol. III, pp. 1071–1094 (2006)Google Scholar
  21. 21.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: STOC, pp. 513–522 (2009)Google Scholar
  22. 22.
    Shapley, L.S.: Additive and Non-Additive Set Functions. PhD thesis, Department of Mathematics, Princeton University (1953)Google Scholar
  23. 23.
    Suri, S., Tóth, C., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47(1), 79–96 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Young, H.P.: Strategic Learning and its Limits. Oxford University Press, London (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kshipra Bhawalkar
    • 1
  • Martin Gairing
    • 2
  • Tim Roughgarden
    • 1
  1. 1.Stanford UniversityStanfordUSA
  2. 2.University of LiverpoolLiverpoolU.K.

Personalised recommendations