Shortest Paths in Planar Graphs with Real Lengths in O(nlog2n/loglogn) Time

  • Shay Mozes
  • Christian Wulff-Nilsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6347)

Abstract

Given an n-vertex planar directed graph with real edge lengths and with no negative cycles, we show how to compute single-source shortest path distances in the graph in O(nlog2n/loglogn) time with O(n) space. This improves on a recent O(nlog2n) time bound by Klein et al.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chambers, E.W., Erickson, J., Nayyeri, A.: Homology flows, cohomology cuts. In: Proc. 42nd Ann. ACM Symp. Theory Comput., pp. 273–282 (2009)Google Scholar
  2. 2.
    Erickson, J.: Private Communication (2010)Google Scholar
  3. 3.
    Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72(5), 868–889 (2006)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Klawe, M.M., Kleitman, D.J.: An almost linear time algorithm for generalized matrix searching. SIAM Journal on Discrete Math. 3(1), 81–97 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Klein, P.N.: Multiple-source shortest paths in planar graphs. In: Proceedings, 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 146–155 (2005)Google Scholar
  7. 7.
    Klein, P.N., Mozes, S., Weimann, O.: Shortest Paths in Directed Planar Graphs with Negative Lengths: a Linear-Space O(nlog2n)-Time Algorithm. In: Proc. 19th Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 236–245 (2009)Google Scholar
  8. 8.
    Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM Journal on Numerical Analysis 16, 346–358 (1979)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32, 265–279 (1986)MATHCrossRefGoogle Scholar
  10. 10.
    Aggarwal, A., Klawe, M., Moran, S., Shor, P.W., Wilber, R.: Geometric applications of a matrix searching algorithm. In: SCG 1986: Proceedings of the second annual symposium on Computational geometry, pp. 285–292 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shay Mozes
    • 1
  • Christian Wulff-Nilsen
    • 2
  1. 1.Department of Computer ScienceBrown UniversityProvidenceUSA
  2. 2.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations