Fast Minor Testing in Planar Graphs

  • Isolde Adler
  • Frederic Dorn
  • Fedor V. Fomin
  • Ignasi Sau
  • Dimitrios M. Thilikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6346)

Abstract

Minor containment is a fundamental problem in Algorithmic Graph Theory, as numerous graph algorithms use it as a subroutine. A model of a graph H in a graph G is a set of disjoint connected subgraphs of G indexed by the vertices of H, such that if {u,v} is an edge of H, then there is an edge of G between components Cu and Cv. Graph H is a minor of G if G contains a model of H as a subgraph. We give an algorithm that, given a planar n-vertex graph G and an h-vertex graph H, either finds in time \(2^{\mathcal{O}(h)} \cdot n + \mathcal{O}(n^{2}\cdot \log n)\) a model of H in G, or correctly concludes that G does not contain H as a minor. Our algorithm is the first single-exponential algorithm for this problem and improves all previous minor testing algorithms in planar graphs. Our technique is based on a novel approach called partially embedded dynamic programming.

Keywords

graph minors planar graphs branchwidth parameterized complexity dynamic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Faster Parameterized Algorithms for Minor Containment. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 322–333. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Adler, I., Dorn, F., Fomin, F.V., Sau, I., Thilikos, D.M.: Fast Minor Testing in Planar Graphs (2010), http://users.uoa.gr/~sedthilk/papers/fastminorch.pdf
  3. 3.
    Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33, 461–493 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 153–180 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Demaine, E.D., Hajiaghayi, M.: Bidimensionality. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms. Springer, Heidelberg (2008)Google Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 590–601 (2005)Google Scholar
  8. 8.
    Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.i.: Algorithmic Graph Minor Theory: Decomposition, Approximation, and Coloring. In: Proc. of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 637–646 (2005)Google Scholar
  9. 9.
    Diestel, R.: Graph Theory, vol. 173. Springer, Heidelberg (2005)MATHGoogle Scholar
  10. 10.
    Dinneen, M., Xiong, L.: The Feasibility and Use of a Minor Containment Algorithm. Computer Science Technical Reports 171, University of Auckland (2000)Google Scholar
  11. 11.
    Dorn, F.: Planar Subgraph Isomorphism Revisited. In: Proc. of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 263–274 (2010)Google Scholar
  12. 12.
    Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Computer Science Review 2(1), 29–39 (2008)CrossRefGoogle Scholar
  13. 13.
    Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions. Algorithmica (2009) (to appear)Google Scholar
  14. 14.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  15. 15.
    Fellows, M.R., Langston, M.A.: On search, decision and the efficiency of polynomial-time algorithms. J. Comp. Syst. Sc. 49, 769–779 (1994)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  17. 17.
    Gu, Q.-P., Tamaki, H.: Constant-factor approximations of branch-decomposition and largest grid minor of planar graphs in O(n 1 + ε) time. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 984–993. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Gu, Q.P., Tamaki, H.: Improved bound on the planar branchwidth with respect to the largest grid minor size. Technical Report SFU-CMPT-TR 2009-17, Simon Fraiser University (2009)Google Scholar
  19. 19.
    Hicks, I.V.: Branch decompositions and minor containment. Networks 43(1), 1–9 (2004)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kawarabayashi, K.i., Reed, B.A.: Hadwiger’s conjecture is decidable. In: Proc. of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 445–454 (2009)Google Scholar
  21. 21.
    Kawarabayashi, K.i., Wollan, P.: A shorter proof of the Graph Minor Algorithm - The Unique Linkage Theorem. In: Proc. of the 42st Annual ACM Symposium on Theory of Computing, STOC (to appear, 2010)Google Scholar
  22. 22.
    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9, 615–627 (1980)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Mohar, B., Thomassen, C.: Graphs on surfaces. John Hopkins University Press (2001)Google Scholar
  24. 24.
    Osthus, D., Prömel, H.J., Taraz, A.: On random planar graphs, the number of planar graphs and their triangulations. J. Comb. Theory, Ser. B 88(1), 119–134 (2003)MATHCrossRefGoogle Scholar
  25. 25.
    Reed, B.A., Li, Z.: Optimization and Recognition for K 5-minor Free Graphs in Linear Time. In: Proc. of the 8th Latin American Symposium on Theoretical Informatics (LATIN), pp. 206–215 (2008)Google Scholar
  26. 26.
    Robertson, N., Seymour, P.: Graph Minors. XIII. The Disjoint Paths Problem. J. Comb. Theory, Ser. B 63(1), 65–110 (1995)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B 62(2), 323–348 (1994)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Robertson, N., Seymour, P.D.: Graph Minors. XX. Wagner’s Conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Rué, J., Sau, I., Thilikos, D.M.: Dynamic Programming for Graphs on Surfaces. In: Proc. of the 37th International Colloquium on Automata, Languages and Programming, ICALP (to appear, 2010), http://hal.archives-ouvertes.fr/inria-00443582
  30. 30.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tutte, W.T.: A census of planar triangulations. Canadian Journal of Mathematics 14, 21–38 (1962)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Isolde Adler
    • 1
  • Frederic Dorn
    • 2
  • Fedor V. Fomin
    • 2
  • Ignasi Sau
    • 3
  • Dimitrios M. Thilikos
    • 4
  1. 1.Institut für InformatikGoethe-UniversitätFrankfurtGermany
  2. 2.Department of InformaticsUniversity of BergenNorway
  3. 3.Department of Computer ScienceTechnionHaifaIsrael
  4. 4.Department of Mathematics, National and KapodistrianUniversity of AthensGreece

Personalised recommendations