The Geodesic Diameter of Polygonal Domains

  • Sang Won Bae
  • Matias Korman
  • Yoshio Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6346)


This paper studies the geodesic diameter of polygonal domains having h holes and n corners. For simple polygons (i.e., h = 0), it is known that the geodesic diameter is determined by a pair of corners of a given polygon and can be computed in linear time. For general polygonal domains with h ≥ 1, however, no algorithm for computing the geodesic diameter was known prior to this paper. In this paper, we present the first algorithm that computes the geodesic diameter of a given polygonal domain in worst-case time O(n 7.73) or O(n 7 (logn + h)). Among other results, we show the following geometric observation: the geodesic diameter can be determined by two points in its interior. In such a case, there are at least five shortest paths between the points.


Short Path Geodesic Distance Simple Polygon Lower Envelope Polygonal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. SIAM J. Comput. 26(6), 1689–1713 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoi diagram. Discrete Comput. Geom. 9, 217–255 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon. Technical Report SOCS-85.32, McGill University (1985)Google Scholar
  4. 4.
    Bae, S.W., Chwa, K.-Y.: The geodesic farthest-site Voronoi diagram in a polygonal domain with holes. In: Proc. 25th Annu. Sympos. Comput. Geom. (SoCG), pp. 198–207 (2009)Google Scholar
  5. 5.
    Bae, S.W., Korman, M., Okamoto, Y.: The geodesic diameter of polygonal domains. arXiv preprint (2010), arXiv:1001.0695Google Scholar
  6. 6.
    Bae, S.W., Okamoto, Y.: Querying two boundary points for shortest paths in a polygonal domain. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1054–1063. Springer, Heidelberg (2009), arXiv:0911.5017Google Scholar
  7. 7.
    Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd Annu. Sympos. Found. Comput. Sci. (FOCS), pp. 339–349 (1982)Google Scholar
  8. 8.
    Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In: Proc. 10th ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 215–224 (1999)Google Scholar
  9. 9.
    Cook IV, A.F., Wenk, C.: Shortest path problems on a polyhedral surface. In: Proc. 11th Internat. Sympos. Algo. Data Struct (WADS), pp. 156–167 (2009)Google Scholar
  10. 10.
    Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Guo, H., Maheshwari, A., Sack, J.-R.: Shortest path queries in polygonal domains. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 200–211. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hershberger, J., Suri, S.: Matrix searching with the shortest path metric. SIAM J. Comput. 26(6), 1612–1634 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput. Geom. Appl. 6(3), 309–331 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Computational Geometry, 2nd edn., ch. 27, pp. 607–641. CRC Press, Inc., Boca Raton (2004)Google Scholar
  16. 16.
    O’Rourke, J., Schevon, C.: Computing the geodesic diameter of a 3-polytope. In: Proc. 5th Annu. Sympos. Comput. Geom. (SoCG), pp. 370–379 (1989)Google Scholar
  17. 17.
    O’Rourke, J., Suri, S.: Polygons. In: Handbook of Discrete and Computational Geometry, 2nd edn., ch. 26, pp. 583–606. CRC Press, Inc., Boca Raton (2004)Google Scholar
  18. 18.
    Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Suri, S.: The all-geodesic-furthest neighbors problem for simple polygons. In: Proc. 3rd Annu. Sympos. Comput. Geom. (SoCG), pp. 64–75 (1987)Google Scholar
  20. 20.
    Zalgaller, V.A.: An isoperimetric problem for tetrahedra. Journal of Mathematical Sciences 140(4), 511–527 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sang Won Bae
    • 1
  • Matias Korman
    • 2
  • Yoshio Okamoto
    • 3
  1. 1.Department of Computer ScienceKyonggi UniversityKorea
  2. 2.Computer Science DepartmentUniversité Libre de Bruxelles (ULB)Belgium
  3. 3.Graduate School of Information Science and EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations