Advertisement

Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space

with Fast Point-Location
  • Michael Hemmer
  • Ophir Setter
  • Dan Halperin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6346)

Abstract

We introduce a new, efficient, and complete algorithm, and its exact implementation, to compute the Voronoi diagram of lines in space. This is a major milestone towards the robust construction of the Voronoi diagram of polyhedra. As we follow the exact geometric-computation paradigm, it is guaranteed that we always compute the mathematically correct result. The algorithm is complete in the sense that it can handle all configurations, in particular all degenerate ones. The algorithm requires O(n 3 + ε ) time and space, where n is the number of lines. The Voronoi diagram is represented by a data structure that permits answering point-location queries in O(log2 n) expected time. The implementation employs the Cgal packages for constructing arrangements and lower envelopes together with advanced algebraic tools.

Keywords

Voronoi Diagrams Point Location Lower Envelopes Robust Geometric Computing Computational Geometry CGAL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Disc. Comput. Geom. 15(1), 1–13 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.) Handb. Comput. Geom., ch. 5, pp. 201–290. Elsevier, Amsterdam (2000)Google Scholar
  3. 3.
    Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1999)Google Scholar
  4. 4.
    Berberich, E., Hemmer, M., Kerber, M.: A generic algebraic kernel for non-linear geometric applications. Research Report 7274, INRIA (2010)Google Scholar
  5. 5.
    Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: Mitchell, J., Rote, G., Kettner, L. (eds.) Proc. 21st Annu. ACM Symp. Comput. Geom., pp. 99–106. ACM Press, Pisa (2005)Google Scholar
  6. 6.
    Blum, H.: A transformation for extracting new descriptors of shape. In: WathenDunn, W. (ed.) Models for the Perception of Speech and Visual Form. MIT Press, Cambridge (1967)Google Scholar
  7. 7.
    Boissonnat, J.D., Delage, C.: Convex hull and Voronoi diagram of additively weighted points. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 367–378. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Boissonnat, J.D., Teillaud, M. (eds.): Effective Computational Geometry for Curves and Surfaces. Mathematics and Visualization. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Culver, T., Keyser, J., Manocha, D.: Exact computation of the medial axis of a polyhedron. Computer Aided Geometric Design 21(1), 65–98 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Devillers, O.: Improved incremental randomized Delaunay triangulation. In: Proc. 14th Annu. ACM Symp. Comput. Geom., pp. 106–115. ACM Press, New York (1998)Google Scholar
  11. 11.
    Devroye, L., Lemaire, C., Moreau, J.M.: Expected time analysis for Delaunay point location. Computational Geometry 29(2), 61–89 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dupont, L., Hemmer, M., Petitjean, S., Schömer, E.: Complete, exact and efficient implementation for computing the adjacency graph of an arrangement of quadrics. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 633–644. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Disc. Comput. Geom. 1, 25–44 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: The predicates for the Voronoi diagram of ellipses. In: Proc. 22nd Annu. ACM Symp. Comput. Geom., pp. 227–236. ACM Press, New York (2006)Google Scholar
  15. 15.
    Emiris, I.Z., Karavelas, M.I.: The predicates of the Apollonius diagram: Algorithmic analysis and implementation. Comput. Geom. Theory Appl. 33(1-2), 18–57 (2006)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Everett, H., Gillot, C., Lazard, D., Lazard, S., Pouget, M.: The Voronoi diagram of three arbitrary lines in \({\mathbb R}^3\). In: Abstracts of 25th Eur. Workshop Comput. Geom. (2009)Google Scholar
  17. 17.
    Everett, H., Lazard, S., Lazard, D., Din, M.S.E.: The Voronoi diagram of three lines. In: Proc. 23rd Annu. ACM Symp. Comput. Geom., pp. 255–264. ACM Press, New York (2007)Google Scholar
  18. 18.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  19. 19.
    Halperin, D., Kavraki, L.E., Latombe, J.C.: Robotics. In: Goodman, J.E., O’Rourke, J. (eds.) Handb. Disc. Comput. Geom., 2nd edn., ch. 48, pp. 1065–1093. Chapman & Hall/CRC, Boca Raton (2004)Google Scholar
  20. 20.
    Hanniel, I., Elber, G.: Computing the Voronoi cells of planes, spheres and cylinders in \({\mathbb R}^3\). Comput. Aided Geom. Des. 26(6), 695–710 (2009)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Haran, I., Halperin, D.: An experimental study of point location in planar arrangements in CGAL. ACM Journal of Experimental Algorithmics 13 (2008)Google Scholar
  22. 22.
    Frey, P.J.: : MEDIT : An interactive Mesh visualization Software. Technical Report RT-0253, INRIA (December 2001)Google Scholar
  23. 23.
    Karavelas, M.I.: A robust and effient implementation for the segment Voronoi diagram. In: Int. Symp. on Voronoi Diagrams in Sci. and Engineering, pp. 51–62 (2004)Google Scholar
  24. 24.
    Karavelas, M.I., Yvinec, M.: Dynamic additively weighted Voronoi diagrams in 2D. In: Proc. 10th Annu. Eur. Symp. Alg., pp. 586–598. Springer, London (2002)Google Scholar
  25. 25.
    Kim, D.S., Seo, J., Kim, D., Cho, Y., Ryu, J.: The beta-shape and beta-complex for analysis of molecular structures. In: Gavrilova, M.L. (ed.) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. Studies in Computational Intelligence, vol. 158, pp. 47–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Koltun, V., Sharir, M.: 3-dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations. SIAM J. on Computing 32(3), 616–642 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Milenkovic, V.: Robust construction of the Voronoi diagram of a polyhedron. In: Proc. 5th Canad. Conf. Comput. Geom., pp. 473–478 (1993)Google Scholar
  28. 28.
    Mulmuley, K.: A fast planar partition algorithm, I. In: Proc. 29th Annu. IEEE Sympos. Found. Comput. Sci., pp. 580–589 (1988)Google Scholar
  29. 29.
    Myers, N.: Traits: A new and useful template technique. C++ Gems 17 (1995)Google Scholar
  30. 30.
    Rineau, L., Yvinec, M.: 3D surface mesh generation. In: CGAL Editorial Board CGAL User and Reference Manual (ed.), 3.5 edn. (2009)Google Scholar
  31. 31.
    Setter, O., Sharir, M., Halperin, D.: Constructing two-dimensional Voronoi diagrams via divide-and-conquer of envelopes in space. Transactions on Computational Sciences (to appear, 2010)Google Scholar
  32. 32.
    Sharir, M.: Almost tight upper bounds for lower envelopes in higher dimensions. Disc. Comput. Geom. 12(1), 327–345 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    The CGAL Project: CGAL User and Reference Manual. CGAL Editorial Board, 3.6 edn. (2010), http://www.cgal.org/
  34. 34.
    Wein, R., van den Berg, J.P., Halperin, D.: The visibility-Voronoi complex and its applications. Computational Geometry: Theory and Applications 36(1), 66–87 (2007); special Issue on the 21st European Workshop on Computational Geometry - EWCG 2005Google Scholar
  35. 35.
    Yaffe, E., Halperin, D.: Approximating the pathway axis and the persistence diagram of a collection of balls in 3-space. In: Proc. 24th Annu. ACM Symp. Comput. Geom., pp. 260–269. ACM Press, New York (2008)Google Scholar
  36. 36.
    Yap, C.K., Dubé, T.: The exact computation paradigm. In: Du, D.Z., Hwang, F.K. (eds.) Computing in Euclidean Geometry, 2nd edn. LNCS, vol. 1, pp. 452–492. World Scientific, Singapore (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Michael Hemmer
    • 1
  • Ophir Setter
    • 2
  • Dan Halperin
    • 2
  1. 1.INRIASophia AntipolisFrance
  2. 2.Tel-Aviv UniversityIsrael

Personalised recommendations