Spatio-temporal Range Searching over Compressed Kinetic Sensor Data

  • Sorelle A. Friedler
  • David M. Mount
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6346)


As sensor networks increase in size and number, efficient techniques are required to process the very large data sets that they generate. Frequently, sensor networks monitor objects in motion within their vicinity; the data associated with the movement of these objects are known as kinetic data. In an earlier paper we introduced an algorithm which, given a set of sensor observations, losslessly compresses this data to a size that is within a constant factor of the asymptotically optimal joint entropy bound. In this paper we present an efficient algorithm for answering spatio-temporal range queries. Our algorithm operates on a compressed representation of the data, without the need to decompress it. We analyze the efficiency of our algorithm in terms of a natural measure of information content, the joint entropy of the sensor outputs. We show that with space roughly equal to entropy, queries can be answered in time that is roughly logarithmic in entropy. In addition, we show experimentally that on real-world data our range searching structures use less space and have faster query times than the naive versions. These results represent the first solutions to range searching problems over compressed kinetic sensor data.


Sensor Network Range Query Compression Algorithm Query Time Commutative Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computational Geometry, pp. 1–56. American Mathematical Society, Providence (1998)Google Scholar
  2. 2.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. In: Computer Networks, pp. 393–422 (2002)Google Scholar
  3. 3.
    Amir, A., Benson, G., Farach-Colton, M.: Let sleeping files lie: Pattern matching in Z-compressed files. J. Comput. Syst. Sci. 52(2), 299–307 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Arya, S., Mount, D.M.: Approximate range searching. Computational Geometry: Theory and Applications 17, 135–152 (2000)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theoretical Computer Science 321, 5–12 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferragina, P., Gonzalez, R., Navarro, G., Venturini, R.: Compressed text indexes: From theory to practice. Journal of Experimental Algorithmics 13, 12–31 (2009)CrossRefGoogle Scholar
  7. 7.
    Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and searching XML data via two zips. In: Proc. of the 15th International Conference on World Wide Web, pp. 751–760 (2006)Google Scholar
  8. 8.
    Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4), 552–581 (2005)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy bounds. Theoretical Computer Science 372(1), 115–121 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Friedler, S.A., Mount, D.M.: Compressing kinetic data from sensor networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 191–202. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Friedler, S.A., Mount, D.M.: Realistic compression of kinetic sensor data. Technical Report CS-TR-4959, University of Maryland, College Park (2010)Google Scholar
  12. 12.
    Friedler, S.A., Mount, D.M.: Spatio-temporal range searching over compressed kinetic sensor data. Technical Report CS-TR-4960, U. Maryland (2010)Google Scholar
  13. 13.
    González, R., Navarro, G.: Statistical encoding of succinct data structures. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–305. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Guitton, A., Trigoni, N., Helmer, S.: Fault-tolerant compression algorithms for sensor networks with unreliable links. Technical Report BBKCS-08-01, Birkbeck, University of London (2008)Google Scholar
  15. 15.
    Hon, W.-K., Shah, R., Vitter, J.S.: Compression, indexing, and retrieval for massive string data. In: Amir, A., Parida, L. (eds.) Combinatorial Pattern Matching. LNCS, vol. 6129, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proceedings of the IRE, vol. 40 (September 1952)Google Scholar
  17. 17.
    Kosaraju, R.S., Manzini, G.: Compression of low entropy strings with Lempel–Ziv algorithms. SIAM J. Comput. 29(3), 893–911 (1999)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity search. In: Symposium on Discrete Algorithms (2004)Google Scholar
  19. 19.
    Manzini, G.: An analysis of the Burrows–Wheeler transform. J. ACM 48(3), 407–430 (2001)CrossRefMathSciNetGoogle Scholar
  20. 20.
    MIT Media Lab. The Owl project,
  21. 21.
    Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys 39(1) (2007)Google Scholar
  22. 22.
    Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Development 20 (1976)Google Scholar
  23. 23.
    Saunier, N., Sayed, T.: Automated analysis of road safety with video data. In: Transportation Research Record, pp. 57–64 (2007)Google Scholar
  24. 24.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)Google Scholar
  25. 25.
    Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J., Fox, J.W., Afanasyev, V.: Tracking long-distance songbird migration by using geolocators. Science, 896 (February 2009)Google Scholar
  26. 26.
    Wren, C.R., Ivanov, Y.A., Leigh, D., Westbues, J.: The MERL motion detector dataset: 2007 workshop on massive datasets. Technical Report TR2007-069, Mitsubishi Electric Research Laboratories, Cambridge, MA, USA (August 2007)Google Scholar
  27. 27.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3) (May 1977)Google Scholar
  28. 28.
    Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 24(5), 530–536 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sorelle A. Friedler
    • 1
  • David M. Mount
    • 1
  1. 1.Dept. of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations