Online Stochastic Packing Applied to Display Ad Allocation

  • Jon Feldman
  • Monika Henzinger
  • Nitish Korula
  • Vahab S. Mirrokni
  • Cliff Stein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6346)


Inspired by online ad allocation, we study online stochastic packing integer programs from theoretical and practical standpoints. We first present a near-optimal online algorithm for a general class of packing integer programs which model various online resource allocation problems including online variants of routing, ad allocations, generalized assignment, and combinatorial auctions. As our main theoretical result, we prove that a simple dual training-based algorithm achieves a (1 − o(1))-approximation guarantee in the random order stochastic model. This is a significant improvement over logarithmic or constant-factor approximations for the adversarial variants of the same problems (e.g. factor \(1-{1\over e}\) for online ad allocation, and log(m) for online routing). We then focus on the online display ad allocation problem and study the efficiency and fairness of various training-based and online allocation algorithms on data sets collected from real-life display ad allocation system. Our experimental evaluation confirms the effectiveness of training-based algorithms on real data sets, and also indicates an intrinsic trade-off between fairness and efficiency.


Competitive Ratio Dual Variable Online Algorithm Packing Problem Spot Market 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear programming, Working paper posted at
  2. 2.
    Alaei, S., Malekian, A.: Maximizing sequence-submodular functions (2009) (manuscript)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In: FOCS, vol. 34, pp. 32–40 (1993)Google Scholar
  4. 4.
    Azar, Y., Birnbaum, B., Karlin, A., Mathieu, C., Nguyen, C.: Improved Approximation Algorithms for Budgeted Allocations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 186–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized secretary problems. SIGecom Exchanges 7(2) (2008)Google Scholar
  6. 6.
    Buchbinder, N., Jain, K., Naor, J.: Online Primal-Dual Algorithms for Maximizing Ad-Auctions Revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, p. 253. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a primal-dual approach. In: FOCS, pp. 293–304 (2006)Google Scholar
  8. 8.
    Chakrabarty, D., Goel, G.: On the approximability of budgeted allocations and improved lower bounds for submodular welfare maximization and GAP. In: Proc. FOCS, pp. 687–696 (2008)Google Scholar
  9. 9.
    Chawla, S., Hartline, J.D., Malec, D., Sivan, B.: Sequential posted pricing and multi-parameter mechanism design. In: Proc. of ACM STOC, pp. 311–320 (2010)Google Scholar
  10. 10.
    Devanur, N., Hayes, T.: The adwords problem: Online keyword matching with budgeted bidders under random permutations. In: ACM EC (2009)Google Scholar
  11. 11.
    Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic ad allocation: Efficiency and fairness,
  12. 12.
    Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pal, M.: Online ad assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 374–385. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: Beating 1 - 1/e. In: FOCS (2009)Google Scholar
  14. 14.
    Ghosh, A., McAfee, P., Papineni, K., Vassilvitskii, S.: Bidding for representative allocations for display advertising. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 208–219. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Ghosh, A., Rubinstein, B.I.P., Vassilvitskii, S., Zinkevich, M.: Adaptive bidding for display advertising. In: WWW, pp. 251–260 (2009)Google Scholar
  16. 16.
    Goel, A., Meyerson, A., Plotkin, S.A.: Combining fairness with throughput: online routing with multiple objectives. In: STOC, pp. 670–679 (2000)Google Scholar
  17. 17.
    Goel, G., Mehta, A.: Adwords auctions with decreasing valuation bids. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 335–340. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Goel, G., Mehta, A.: Online budgeted matching in random input models with applications to adwords. In: SODA, pp. 982–991 (2008)Google Scholar
  19. 19.
    Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for online bipartite matching. In: Proc. STOC (1990)Google Scholar
  20. 20.
    Kleinberg, J.M., Rabani, Y., Tardos, É.: Fairness in routing and load balancing. J. Comput. Syst. Sci. 63(1), 2–20 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Korula, N., Pal, M.: Algorithms for secretary problems on graphs and hypergraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 508–520. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Kumar, A., Kleinberg, J.M.: Fairness measures for resource allocation. SIAM J. Comput. 36(3), 657–680 (2006)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of indivisible goods. In: ACM EC (2004)Google Scholar
  24. 24.
    Mahdian, M., Nazerzadeh, H., Saberi, A.: Allocating online advertisement space with unreliable estimates. In: ACM EC, pp. 288–294 (2007)Google Scholar
  25. 25.
    Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online matching. In: FOCS (2005)Google Scholar
  26. 26.
    Srinivasan, A.: Budgeted Allocations in the Full-Information Setting. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 247–253. Springer, Heidelberg (2008)Google Scholar
  27. 27.
    Vee, E., Vassilvitskii, S., Shanmugasundaram, J.: Optimal online assignment with forecasts. In: Proc. of ACM EC, pp. 109–118 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jon Feldman
    • 1
  • Monika Henzinger
    • 2
  • Nitish Korula
    • 3
  • Vahab S. Mirrokni
    • 1
  • Cliff Stein
    • 4
  1. 1.Google ResearchNew YorkU.S.A.
  2. 2.University of ViennaAustria
  3. 3.University of Illinois at Urbana-Champaign 
  4. 4.Google Research and Columbia UniversityNew York

Personalised recommendations