Advertisement

Automatic Verification of Determinism for Structured Parallel Programs

  • Martin Vechev
  • Eran Yahav
  • Raghavan Raman
  • Vivek Sarkar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6337)

Abstract

We present a static analysis for automatically verifying determinism of structured parallel programs. The main idea is to leverage the structure of the program to reduce determinism verification to an independence property that can be proved using a simple sequential analysis. Given a task-parallel program, we identify program fragments that may execute in parallel and check that these fragments perform independent memory accesses using a sequential analysis. Since the parts that can execute in parallel are typically only a small fraction of the program, we can employ powerful numerical abstractions to establish that tasks executing in parallel only perform independent memory accesses. We have implemented our analysis in a tool called Dice and successfully applied it to verify determinism on a suite of benchmarks derived from those used in the high-performance computing community.

Keywords

Memory Access Parallel Task Abstract Domain Numerical Domain Reference Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dojo: Ensuring determinism of concurrent systems, https://researcher.ibm.com/researcher/view_project.php?id=1337
  2. 2.
    Banerjee, U. K. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Norwell (1988)Google Scholar
  3. 3.
    Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: an efficient multithreaded runtime system. In: PPoPP, pp. 207–216 (October 1995)Google Scholar
  4. 4.
    Bocchino, R., Adve, V., Adve, S., Snir, M.: Parallel programming must be deterministic by default. In: First USENIX Workship on Hot Topics in Parallelism (HOTPAR 2009) (2009)Google Scholar
  5. 5.
    Burnim, J., Sen, K.: Asserting and checking determinism for multithreaded programs. In: ESEC/FSE 2009, pp. 3–12. ACM, New York (2009)CrossRefGoogle Scholar
  6. 6.
    Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA, pp. 519–538 (October 2005)Google Scholar
  7. 7.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Tucson, Arizona, pp. 84–97. ACM Press, New York (1978)Google Scholar
  8. 8.
    Devietti, J., Lucia, B., Ceze, L., Oskin, M.: Dmp: deterministic shared memory multiprocessing. In: ASPLOS ’09: Proceeding of the 14th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 85–96. ACM Press, New York (2009)CrossRefGoogle Scholar
  9. 9.
    Edinburgh Parallel Computing Centre. Java grande forum benchmark suite, http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
  10. 10.
    Edwards, S.A., Tardieu, O.: Shim: a deterministic model for heterogeneous embedded systems. In: EMSOFT 2005: Proceedings of the 5th ACM International Conference on Embedded Software, pp. 264–272. ACM, New York (2005)CrossRefGoogle Scholar
  11. 11.
    Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs. In: SPAA 1997: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 1–11. ACM, New York (1997)CrossRefGoogle Scholar
  12. 12.
    Ferrara, P.: Static analysis of the determinism of multithreaded programs. In: Proceedings of the Sixth IEEE International Conference on Software Engineering and Formal Methods (SEFM 2008). I. C. Society, Los Alamitos (November 2008)Google Scholar
  13. 13.
    Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. In: PLDI 2009: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 121–133. ACM, New York (2009)CrossRefGoogle Scholar
  14. 14.
    Horwitz, S., Pfeiffer, P., Reps, T.: Dependence analysis for pointer variables. In: PLDI 1989: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language Design and Implementation, pp. 28–40. ACM, New York (1989)CrossRefGoogle Scholar
  15. 15.
    Jeannet, B., Mine, A.: Apron: A library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–667. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Lalire, G., Argoud, M., Jeannet, B.: The interproc analyzer, http://pop-art.inrialpes.fr/interproc/interprocweb.cgi
  17. 17.
    Lamport, L.: The parallel execution of do loops. ACM Commun. 17(2), 83–93 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lea, D.: A java fork/join framework. In: JAVA 2000: Proceedings of the ACM 2000 Conference on Java Grande, pp. 36–43. ACM, New York (2000)CrossRefGoogle Scholar
  19. 19.
    Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)CrossRefGoogle Scholar
  20. 20.
    Lhoták, O., Hendren, L.: Scaling java points-to analysis using spark. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Li, L., Verbrugge, C.: A practical MHP information analysis for concurrent java programs. In: Eigenmann, R., Li, Z., Midkiff, S.P. (eds.) LCPC 2004. LNCS, vol. 3602, pp. 194–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for lightweight data-race detection. In: PLDI 2009, pp. 134–143. ACM, New York (2009)CrossRefGoogle Scholar
  23. 23.
    Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1), 31–100 (2006)zbMATHCrossRefGoogle Scholar
  24. 24.
    Muchnick, S.S.: Advanced compiler design and implementation. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  25. 25.
    Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI 2006: Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 308–319. ACM, New York (2006)CrossRefGoogle Scholar
  26. 26.
    Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing MHP information for concurrent Java programs. In: Proceedings of the Joint 7th European Software Engineering Conference and 7th ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp. 338–354 (September 1999)Google Scholar
  27. 27.
    O’Callahan, R., Choi, J.-D.: Hybrid dynamic data race detection. In: PPoPP 2003: Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 167–178. ACM, New York (2003)CrossRefGoogle Scholar
  28. 28.
    Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multithreading in software. In: ASPLOS 2009, pp. 97–108. ACM, New York (2009)CrossRefGoogle Scholar
  29. 29.
    Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation logic. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Rugina, R., Rinard, M.: Automatic parallelization of divide and conquer algorithms. In: PPoPP 1999: Proceedings of the seventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 72–83. ACM, New York (1999)CrossRefGoogle Scholar
  31. 31.
    Rugina, R., Rinard, M.: Symbolic bounds analysis of pointers, array indices, and accessed memory regions. In: PLDI 2000: Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation, pp. 182–195. ACM, New York (2000)CrossRefGoogle Scholar
  32. 32.
    Rugina, R., Rinard, M.C.: Symbolic bounds analysis of pointers, array indices, and accessed memory regions. ACM Trans. Program. Lang. Syst. 27(2), 185–235 (2005)CrossRefGoogle Scholar
  33. 33.
    Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A dynamic determinism checker for multithreaded programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 394–409. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391–411 (1997)CrossRefGoogle Scholar
  35. 35.
    Shacham, O., Sagiv, M., Schuster, A.: Scaling model checking of dataraces using dynamic information. In: PPoPP 2005, pp. 107–118. ACM Press, New York (2005)CrossRefGoogle Scholar
  36. 36.
    Vallee-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot - a java optimization framework. In: Proceedings of CASCON 1999, pp. 125–135 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Vechev
    • 1
  • Eran Yahav
    • 1
  • Raghavan Raman
    • 2
  • Vivek Sarkar
    • 2
  1. 1.IBM T.J. Watson Research Center 
  2. 2.Rice University 

Personalised recommendations