Advertisement

Interprocedural Analysis with Lazy Propagation

  • Simon Holm Jensen
  • Anders Møller
  • Peter Thiemann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6337)

Abstract

We propose lazy propagation as a technique for flow- and context-sensitive interprocedural analysis of programs with objects and first-class functions where transfer functions may not be distributive. The technique is described formally as a systematic modification of a variant of the monotone framework and its theoretical properties are shown. It is implemented in a type analysis tool for JavaScript where it results in a significant improvement in performance.

Keywords

Transfer Function Abstract State Basic Framework Call Graph Benchmark Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A.M., Ernst, M.D.: Finding bugs in dynamic web applications. In: Proc. International Symposium on Software Testing and Analysis, ISSTA 2008. ACM, New York (July2008)Google Scholar
  3. 3.
    Atkinson, D.C., Griswold, W.G.: Implementation techniques for efficient data-flow analysis of large programs. In: Proc. International Conference on Software Maintenance, ICSM 2001, pp. 52–61 (November 2001)Google Scholar
  4. 4.
    Balakrishnan, G., Reps, T.W.: Recency-abstraction for heap-allocated storage. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Chase, D.R., Wegman, M., Kenneth Zadeck, F.: Analysis of pointers and structures. In: Proc. ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 1990 (June 1990)Google Scholar
  6. 6.
    Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm for distributive constraint systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, p. 90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Furr, M., An, Jong hoon (David), Foster, J.S., Hicks, M.W.: Static type inference for Ruby. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for Ajax intrusion detection. In: Proc. 18th International Conference on World Wide Web, WWW 2009 (2009)Google Scholar
  9. 9.
    Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Hind, M.: Pointer analysis: haven’t we solved this problem yet? In: Proc. ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and Engineering, PASTE 2001, pp. 54–61 (June 2001)Google Scholar
  11. 11.
    Hind, M., Burke, M.G., Carini, P.R., Choi, J.-D.: Interprocedural pointer alias analysis. ACM Transactions on Programming Languages and Systems 21(4), 848–894 (1999)CrossRefGoogle Scholar
  12. 12.
    Horwitz, S., Demers, A., Teitebaum, T.: An efficient general iterative algorithm for dataflow analysis. Acta Informatica 24(6), 679–694 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Horwitz, S., Reps, T., Sagiv, M.: Demand interprocedural dataflow analysis. In: Proc. 3rd ACM SIGSOFT Symposium on Foundations of Software Engineering, FSE 1995 (October 1995)Google Scholar
  14. 14.
    Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural analysis with lazy propagation. Technical report, Department of Computer Science, Aarhus University (2010), http://cs.au.dk/~amoeller/papers/lazy/
  16. 16.
    Jones, N.D., Muchnick, S.S.: A flexible approach to interprocedural data flow analysis and programs with recursive data structures. In: Proc. 9th ACM Symposium on Principles of Programming Languages, POPL 1982 (January 1982)Google Scholar
  17. 17.
    Kam, J.B., Ullman, J.D.: Global data flow analysis and iterative algorithms. Journal of the ACM 23(1), 158–171 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kam, J.B., Ullman, J.D.: Monotone data flow analysis frameworks. Acta Informatica 7, 305–317 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kildall, G.A.: A unified approach to global program optimization. In: Proc. 1st ACM Symposium on Principles of Programming Languages. In: POPL 1973 (October 1973)Google Scholar
  20. 20.
    Liskov, B., Zilles, S.N.: Programming with abstract data types. ACM SIGPLAN Notices 9(4), 50–59 (1974)CrossRefGoogle Scholar
  21. 21.
    O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, p. 1. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Jones, S.L.P.: The Implementation of Functional Programming Languages. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  23. 23.
    Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via graph reachability. In: Proc. 22th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL  1995, pp. 49–61 (January 1995)Google Scholar
  24. 24.
    Ryder, B.G., Landi, W., Stocks, P., Zhang, S., Altucher, R.: A schema for interprocedural modification side-effect analysis with pointer aliasing. ACM Transactions on Programming Languages and Systems 23(2), 105–186 (2001)CrossRefGoogle Scholar
  25. 25.
    Sagiv, S., Reps, T.W., Horwitz, S.: Precise interprocedural dataflow analysis with applications to constant propagation. Theoretical Computer Science 167(1&2), 131–170 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Sharir, M., Pnueli, A.: Two approaches to interprocedural dataflow analysis. In: Program Flow Analysis: Theory and Applications, pp. 189–233. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  27. 27.
    Thiemann, P.: Towards a type system for analyzing JavaScript programs. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 408–422. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Tok, T.B., Guyer, S.Z., Lin, C.: Efficient flow-sensitive interprocedural data-flow analysis in the presence of pointers. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 17–31. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In: Proc. 15th USENIX Security Symposium (August 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Simon Holm Jensen
    • 1
  • Anders Møller
    • 1
  • Peter Thiemann
    • 2
  1. 1.Aarhus UniversityDenmark
  2. 2.Universität FreiburgGermany

Personalised recommendations