Computing Relaxed Abstract Semantics w.r.t. Quadratic Zones Precisely

  • Thomas Martin Gawlitza
  • Helmut Seidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6337)


In the present paper we compute numerical invariants of programs by abstract interpretation. For that we consider the abstract domain of quadratic zones recently introduced by Adjé et al. [2]. We use a relaxed abstract semantics which is at least as precise as the relaxed abstract semantics of Adjé et al. [2]. For computing our relaxed abstract semantics, we present a practical strategy improvement algorithm for precisely computing least solutions of fixpoint equation systems, whose right-hand sides use order-concave operators and the maximum operator. These fixpoint equation systems strictly generalize the fixpoint equation systems considered by Gawlitza and Seidl [11].


Feasible Solution Rational Equation Complete Lattice Strategy Improvement Variable Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.): ICALP 2008, Part I. LNCS, vol. 5125, pp. 973–978. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Adjé, A., Gaubert, S., Goubault, E.: Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 23–42. Springer, Heidelberg (2010) ISBN 978-3-642-11956-9CrossRefGoogle Scholar
  3. 3.
    Björklund, H., Sandberg, S., Vorobyov, S.: Optimization on completely unimodal hypercubes. Technichal report 2002-18, Department of Information Technology, Uppsala University (2002)Google Scholar
  4. 4.
    Björklund, H., Sandberg, S., Vorobyov, S.: Complexity of Model Checking by Iterative Improvement: the Pseudo-Boolean Framework. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 381–394. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Borchers, B.: Csdp, a c library for semidefinite programming. In: Optimization Methods and Software, vol. 11, p. 613. Taylor and Francis, Abington (1999)Google Scholar
  6. 6.
    Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Esparza, J., Gawlitza, T., Kiefer, S., Seidl, H.: Approximative methods for monotone systems of min-max-polynomial equations. In: Aceto et al. [1], pp. 698–710, ISBN 978-3-540-70574-1Google Scholar
  8. 8.
    Etessami, K., Yannakakis, M.: Recursive concurrent stochastic games. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 324–335. Springer, Heidelberg (2006) ISBN 3-540-35907-9CrossRefGoogle Scholar
  9. 9.
    Etessami, K., Wojtczak, D., Yannakakis, M.: Recursive stochastic games with positive rewards. In: Aceto et al. [1], pp.711–723, ISBN 978-3-540-70574-1Google Scholar
  10. 10.
    Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration on relational domains. In: Nicola [16], pp. 237–252, ISBN 978-3-540-71314-2Google Scholar
  11. 11.
    Gawlitza, T., Seidl, H.: Precise relational invariants through strategy iteration. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg (2007) ISBN 978-3-540-74914-1CrossRefGoogle Scholar
  12. 12.
    Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: Nicola [16], pp. 300–315 (2007) ISBN 978-3-540-71314-2Google Scholar
  13. 13.
    Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy iteration. Technical report, TUM (2009)Google Scholar
  14. 14.
    Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001) ISBN 3-540-42068-1CrossRefGoogle Scholar
  15. 15.
    Miné, A.: The octagon abstract domain. In: WCRE, p. 310(2001)Google Scholar
  16. 16.
    De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421. Springer, Heidelberg (2007) ISBN 978-3-540-71314-2zbMATHGoogle Scholar
  17. 17.
    Ortega, J., Rheinboldt, W.: Iterative solution of nonlinear equations in several variables. Academic Press, London (1970)zbMATHGoogle Scholar
  18. 18.
    Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 25–41. Springer, Heidelberg (2005) ISBN 3-540-24297-XGoogle Scholar
  19. 19.
    Todd, M.J.: Semidefinite optimization. Acta Numerica 10, 515–560 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Wojtczak, D., Etessami, K.: Premo: An analyzer for probabilistic recursive models. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 66–71. Springer, Heidelberg (2007) ISBN 978-3-540-71208-4CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Martin Gawlitza
    • 1
  • Helmut Seidl
    • 2
  2. 2.Institut für Informatik, I2TU MünchenMünchenGermany

Personalised recommendations