Advertisement

Nearest Neighbour Classification for Trajectory Data

  • Lokesh K. Sharma
  • Om Prakash Vyas
  • Simon Schieder
  • Ajaya K. Akasapu
Part of the Communications in Computer and Information Science book series (CCIS, volume 101)

Abstract

Trajectory data mining is an emerging area of research, having a large variety of applications. This paper proposes a nearest neighbour based trajectory data as two-step process. Extensive experiments were conducted using real datasets of moving vehicles in Milan (Italy). In our method first, we build a classifier from the pre-processed 03 days training trajectory data and then we classify 04 days test trajectory data using class label. The resultant figure shows the our experimental investigation yields output as classified test trajectories, significant in terms of correctly classified success rate being 98.2. To measure the agreement between predicted and observed categorization of the dataset is carried out using Kappa statistics.

Keywords

Trajectory Data Classification Trajectory Data Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giannotti, F., Pedreschi, D.: Mobility, Data Mining and Privacy: Geographic Knowledge Discovery. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Ginnotti, F., Nanni, M., Pedreschi, D., Pinelli, F.: Trajectory Pattern Mining. In: Proceedings of the 13th ACM SIGKDD, pp. 330–339 (2007)Google Scholar
  3. 3.
    Andrienko, G., Malerba, D., May, M., Teisseire, M.: Mining spatio-temporal data. J. of Intelligent Information Systems 27(3), 187–190 (2006)CrossRefGoogle Scholar
  4. 4.
    Andrienko, G., Andrienko, N., Wrobel, S.: Visual Analytics Tools for Analysis of Movement Data. ACM SIGKDD, 38–46 (2007) ISSN: 1931-0145Google Scholar
  5. 5.
    Kuijpers, G., Othman, W.: Trajectory Databases-Data Models, Uncertainty and Complete Query Languages. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 224–238. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: Proceedings ACM SIGMOD Int. Conf. on Management of Data, pp. 593–604 (2007)Google Scholar
  7. 7.
    Lee, J., Han, J., Li, X., Gonzalez, H.: TraClass- Trajectory classification Using Hierarchical Region Based and Trajectory based Clustering. In: ACM, VLDB, New Zealand, pp. 1081–1094 (2008)Google Scholar
  8. 8.
    Koperski K., Adhikary J., Han J.: Spatial Data Mining: Progress and Challenges. In: SIGMOD Workshop on data Mining and Knowledge Discovery (DMKD), pp. 1–10, (1996).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lokesh K. Sharma
    • 1
  • Om Prakash Vyas
    • 2
  • Simon Schieder
    • 3
  • Ajaya K. Akasapu
    • 1
  1. 1.Rungta College of Engineering and TechnologyBhilaiIndia
  2. 2.Indian Institute of Information TechnologyAllahabadIndia
  3. 3.Westfälische Wilhelms-Universität MünsterGermany

Personalised recommendations