Rendezvous of Mobile Agents in Directed Graphs

  • Jérémie Chalopin
  • Shantanu Das
  • Peter Widmayer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6343)

Abstract

We study the problem of gathering at the same location two mobile agents that are dispersed in an unknown and unlabeled environment. This problem called Rendezvous, is a fundamental task in distributed coordination among autonomous entities. Most previous studies on the subject model the environment as an undirected graph and the solution techniques rely heavily on the fact that an agent can backtrack on any edge it traverses. However, such an assumption may not hold for certain scenarios, for instance a road network containing one-way streets. Thus, we consider the case of strongly connected directed graphs and present the first deterministic solution for rendezvous of two anonymous (identical) agents moving in such a digraph. Our algorithm achieves rendezvous with detection for any solvable instance of the problem, without any prior knowledge about the digraph, not even its size.

Keywords

Distributed Algorithm Directed Graph Leader Election Rendezvous Anonymous Networks Mobile Agents Graph Exploration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM Journal on Computing 29(4), 1164–1188 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Local and global properties in networks of processors. In: Proc. of 12th Symposium on Theory of Computing (STOC), pp. 82–93 (1980)Google Scholar
  3. 3.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Can we elect if we cannot compare? In: Proc. 15th ACM Symp. on Parallel Algorithms and Architectures (SPAA’03), pp. 200–209 (2003)Google Scholar
  4. 4.
    Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Election and rendezvous in fully anonymous networks with sense of direction. Theory of Computing Systems 40(2), 143–162 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Research Logistics 48(8), 722–731 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and mapping directed graphs. In: Proc. 30th ACM Symp. on Theory of Computing (STOC), pp. 269–287 (1998)Google Scholar
  7. 7.
    Boldi, P., Vigna, S.: An effective characterization of computability in anonymous networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243, 21–66 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Czyzowicz, J., Dobrev, S., Kralovic, R., Miklík, S., Pardubská, D.: Black Hole Search in Directed Graphs. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 182–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Dobrev, S., Flocchini, P., Kralovic, R., Santoro, N.: Exploring a dangerous unknown graph using tokens. In: Proc. of 5th IFIP International Conference on Theoretical Computer Science, TCS (2006)Google Scholar
  13. 13.
    Fraigniaud, P., Ilcinkas, D.: Digraph exploration with little memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA (2010)Google Scholar
  15. 15.
    Fraigniaud, P., Pelc, A.: Deterministic Rendezvous in Trees with Little Memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoretical Computer Science 399(1-2), 141–156 (2008)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I–Characterizing the solvable cases. IEEE Transactions on Parallel and Distributed Systems 7(1), 69–89 (1996)CrossRefGoogle Scholar
  19. 19.
    Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jérémie Chalopin
    • 1
  • Shantanu Das
    • 1
  • Peter Widmayer
    • 2
  1. 1.LIFCNRS & Aix-Marseille UniversityFrance
  2. 2.Institute of Theoretical Computer ScienceETH ZürichSwitzerland

Personalised recommendations