Advertisement

A Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks

  • Andrea Richa
  • Christian Scheideler
  • Stefan Schmid
  • Jin Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6343)

Abstract

This paper presents a simple local medium access control protocol, called Jade, for multi-hop wireless networks with a single channel that is provably robust against adaptive adversarial jamming. The wireless network is modeled as a unit disk graph on a set of nodes distributed arbitrarily in the plane. In addition to these nodes, there are adversarial jammers that know the protocol and its entire history and that are allowed to jam the wireless channel at any node for an arbitrary (1 − ε)-fraction of the time steps, where 0 < ε< 1 is an arbitrary constant. We assume that the nodes cannot distinguish between jammed transmissions and collisions of regular messages. Nevertheless, we show that Jade achieves an asymptotically optimal throughput if there is a sufficiently dense distribution of nodes.

Keywords

Wireless Sensor Network Medium Access Control Transmission Range Medium Access Control Protocol Medium Access Control Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alnifie, G., Simon, R.: A multi-channel defense against jamming attacks in wireless sensor networks. In: Proc. of Q2SWinet ’07, pp. 95–104 (2007)Google Scholar
  2. 2.
    Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for single-hop wireless networks. In: Proc. of PODC ’08 (2008)Google Scholar
  3. 3.
    Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R., Thapa, B.: On the performance of IEEE 802.11 under jamming. In: Proc. of IEEE Infocom ’08, pp. 1265–1273 (2008)Google Scholar
  4. 4.
    Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: Proc. of SPAA ’05 (2005)Google Scholar
  5. 5.
    Brown, T., James, J., Sethi, A.: Jamming and sensing of encrypted wireless ad hoc networks. In: Proc. of MobiHoc ’06, pp. 120–130 (2006)Google Scholar
  6. 6.
    Chiang, J., Hu, Y.-C.: Cross-layer jamming detection and mitigation in wireless broadcast networks. In: Proc. of MobiCom ’07, pp. 346–349 (2007)Google Scholar
  7. 7.
    Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: Proc. of PODC ’06 (2006)Google Scholar
  8. 8.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. Journal of Algorithms 60(2), 115 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dolev, S., Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C., Kuhn, F., Lynch, N.: Reliable distributed computing on unreliable radio channels. In: Proc. 2009 MobiHoc S3 Workshop (2009)Google Scholar
  10. 10.
    Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.C.: The wireless synchronization problem. In: Proc. 28th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 190–199 (2009)Google Scholar
  11. 11.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a multi-channel radio network: An oblivious approach to coping with malicious interference. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure communication over radio channels. In: Proc. 27th ACM Symposium on Principles of Distributed Computing (PODC), pp. 105–114 (2008)Google Scholar
  13. 13.
    Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Gilbert, S., Guerraoui, R., Kowalski, D., Newport, C.: Interference-resilient information exchange. In: Proc. of the 28th Conference on Computer Communications, IEEE Infocom 2009 (2009)Google Scholar
  15. 15.
    Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C.C.: Interference-resilient information exchange. In: Proc. 28th IEEE International Conference on Computer Communications (INFOCOM), pp. 2249–2257 (2009)Google Scholar
  16. 16.
    Gilbert, S., Guerraoui, R., Newport, C.: Of malicious motes and suspicious sensors: On the efficiency of malicious interference in wireless networks. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol. 4305, pp. 215–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Goldberg, L.A., Mackenzie, P.D., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6) (2000)Google Scholar
  18. 18.
    Hastad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for mulitiple accesschannels. SIAM Journal on Computing 25(4) (1996)Google Scholar
  19. 19.
    Heusse, M., Rousseau, F., Guillier, R., Duda, A.: Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless lans. In: Proc. SIGCOMM (2005)Google Scholar
  20. 20.
    IEEE: Medium access control (MAC) and physical specifications. In: IEEE P802.11/D10 (1999)Google Scholar
  21. 21.
    Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on multi-hop wireless network performance. In: Proc. 9th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 66–80 (2003)Google Scholar
  22. 22.
    Jiang, S., Xue, Y.: Providing survivability against jamming attack via joint dynamic routing and channel assigment. In: Proc. 7th Workshop on Design of Reliable Communication Networks, DRCN (2009)Google Scholar
  23. 23.
    Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable broadcast in radio networks: The bounded collision case. In: Proc. of PODC ’06 (2006)Google Scholar
  24. 24.
    Kuhn, F., Moscibroda, T., Wattenhofer, R.: Radio network clustering from scratch. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Kwak, B.-J., Song, N.-O., Miller, L.E.: Performance analysis of exponential backoff. IEEE/ACM Transactions on Networking 13(2), 343–355 (2005)CrossRefGoogle Scholar
  26. 26.
    Law, Y., van Hoesel, L., Doumen, J., Hartel, P., Havinga, P.: Energy-efficient link-layer jamming attacks against wireless sensor network mac protocols. In: Proc. of SASN ’05, pp. 76–88 (2005)Google Scholar
  27. 27.
    Li, M., Koutsopoulos, I., Poovendran, R.: Optimal jamming attacks and network defense policies in wireless sensor networks. In: Proc. of Infocom ’07, pp. 1307–1315 (2007)Google Scholar
  28. 28.
    Liu, X., Noubir, G., Sundaram, R., Tan, S.: Spread: Foiling smart jammers using multi-layer agility. In: Proc. of Infocom ’07, pp. 2536–2540 (2007)Google Scholar
  29. 29.
    Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed dating despite jammers. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Navda, V., Bohra, A., Ganguly, S., Rubenstein, D.: Using channel hopping to increase 802.11 resilience to jamming attacks. In: Proc. of Infocom ’07, pp. 2526–2530 (2007)Google Scholar
  31. 31.
    Negi, R., Perrig, A.: Jamming analysis of MAC protocols. Technical report, Carnegie Mellon University (2003)Google Scholar
  32. 32.
    Noubir, G.: On connectivity in ad hoc networks under jamming using directional antennas and mobility. In: Langendoerfer, P., Liu, M., Matta, I., Tsaoussidis, V. (eds.) WWIC 2004. LNCS, vol. 2957, pp. 186–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random transmission failures. In: Proc. of PODC ’05 (2005)Google Scholar
  34. 34.
    Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM Journal on Computing 28(2), 709–719 (1999)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Schmidt, J., Siegel, A., Srinivasan, A.: Chernoff-Hoeffding bounds for applications with limited independence. SIAM Journal on Discrete Mathematics 8(2), 223–250 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Simon, M.K., Omura, J.K., Schultz, R.A., Levin, B.K.: Spread Spectrum Communications Handbook. McGraw-Hill, New York (2001)Google Scholar
  37. 37.
    Thuente, D., Acharya, M.: Intelligent jamming in wireless networks with applications to 802.11b and other networks. In: Proc. of MILCOM ’06 (2006)Google Scholar
  38. 38.
    Wood, A., Stankovic, J., Zhou, G.: DEEJAM: Defeating energy-efficient jamming in IEEE 802.15.4-based wireless networks. In: Proc. of SECON ’07 (2007)Google Scholar
  39. 39.
    Xu, W., Ma, K., Trappe, W., Zhang, Y.: Jamming sensor networks: attack and defense strategies. IEEE Network 20(3), 41–47 (2006)CrossRefGoogle Scholar
  40. 40.
    Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and detecting jamming attacks in wireless networks. In: Proc. of MobiHoc ’05, pp. 46–57 (2005)Google Scholar
  41. 41.
    Xu, W., Wood, T., Zhang, Y.: Channel surfing and spatial retreats: defenses against wireless denial of service. In: Proc. of Workshop on Wireless Security (2004)Google Scholar
  42. 42.
    Ye, S., Wang, Y., Tseng, Y.: A jamming-based MAC protocol for wireless multihop ad hoc networks. In: Proc. IEEE 58th Vehicular Technology Conference (2003)Google Scholar
  43. 43.
    Ye, S.-R., Wang, Y.-C., Tseng, Y.-C.: A jamming-based MAC protocol to improve the performance of wireless multihop ad-hoc networks. Wirel. Commun. Mob. Comput. 4(1), 75–84 (2004)CrossRefGoogle Scholar
  44. 44.
    Zander, J.: Jamming in slotted ALOHA multihop packed radio networks. IEEE Transactions on Networking 39(10), 1525–1531 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrea Richa
    • 1
  • Christian Scheideler
    • 2
  • Stefan Schmid
    • 3
  • Jin Zhang
    • 1
  1. 1.Computer Science and Engineering, SCIDSEArizona State UniversityTempeUSA
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany
  3. 3.Deutsche Telekom LaboratoriesTU BerlinBerlinGermany

Personalised recommendations