Advertisement

A Cocktail Approach to the VideoCLEF’09 Linking Task

  • Stephan Raaijmakers
  • Corné Versloot
  • Joost de Wit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6242)

Abstract

In this paper, we describe the TNO approach to the Finding Related Resources or linking task of VideoCLEF09. Our system consists of a weighted combination of off-the-shelf and proprietary modules, including the Wikipedia Miner toolkit of the University of Waikato. Using this cocktail of largely off-the-shelf technology allows for setting a baseline for future approaches to this task.

Keywords

Relevance Score Future Approach Primary Link Mean Reciprocal Rank Secondary Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adafre, S.F., de Rijke, M.: Finding Similar Sentences across Multiple Languages in Wikipedia. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, pp. 62–69 (2006)Google Scholar
  2. 2.
    Chen, H.-H., Ku, L.-W.: An NLP & IR approach to topic detection. Kluwer Academic Publishers, Norwell (2002)Google Scholar
  3. 3.
    De Smet, W., Moens, M.-F.: Cross-language linking of news stories on the web using interlingual topic modelling. In: SWSM 2009: Proceeding of the 2nd ACM Workshop on Social Web Search and Mining, pp. 57–64. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    van Gael, J., Zhu, X.: Correlation clustering for crosslingual link detection. In: Veloso, M.M. (ed.) IJCAI, pp. 1744–1749 (2007)Google Scholar
  5. 5.
    Hatcher, E., Gospodnetic, O.: Lucene in Action. In Action series. Manning Publications Co., Greenwich (2004)Google Scholar
  6. 6.
    Kekäläinen, J., Järvelin, K.: Using graded relevance assessments in IR evaluation. J. Am. Soc. Inf. Sci. Technol. 53(13), 1120–1129 (2002)CrossRefGoogle Scholar
  7. 7.
    Larson, M., Newman, E., Jones, G.: Overview of VideoCLEF 2009: New Perspectives on Speech-based Multimedia Content Enrichment. In: Peters, C., et al. (eds.) CLEF 2009 Workshop, Part II. LNCS, vol. 6242, pp. 354–368. Springer, Heidelberg (2010)Google Scholar
  8. 8.
    Liu, T.-Y.: Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 3(3), 225–331 (2009)CrossRefGoogle Scholar
  9. 9.
    Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Mining (CIKM 2008), pp. 509–518. ACM Press, New York (2008)CrossRefGoogle Scholar
  10. 10.
    Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (EMNLP/VLC-2000), pp. 63–70 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stephan Raaijmakers
    • 1
  • Corné Versloot
    • 1
  • Joost de Wit
    • 1
  1. 1.TNO Information and Communication TechnologyDelftThe Netherlands

Personalised recommendations