In this paper we report on our successful participation in the RobotVision challenge in the ImageCLEF 2009 campaign. We present a place recognition system that employs four different discriminative models trained on different global and local visual cues. In order to provide robust recognition, the outputs generated by the models are combined using a discriminative accumulation method. Moreover, the system is able to provide an indication of the confidence of its decision. We analyse the properties and performance of the system on the training and validation data and report the final score obtained on the test run which ranked first in the obligatory track of the RobotVision task.


Interest Point Scale Invariant Feature Transform Temporal Accumulation Optional Track Place Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luo, J., Pronobis, A., Caputo, B., Jensfelt, P.: Incremental learning for place recognition in dynamic environments. In: Proc. of IROS 2007 (2007)Google Scholar
  2. 2.
    Caputo, B., Pronobis, A., Jensfelt, P.: Overview of the CLEF 2009 Robot Vision task (2009)Google Scholar
  3. 3.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2) (2004)Google Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Pronobis, A., Caputo, B.: Confidence-based cue integration for visual place recognition. In: Proc. of IROS 2007 (2007)Google Scholar
  6. 6.
    Valgren, C., Lilienthal, A.J.: Incremental spectral clustering and seasons: Appearance-based localization in outdoor env. In: Proc. of ICRA 2008 (2008)Google Scholar
  7. 7.
    Filliat, D.: A visual bag of words method for interactive qualitative localization and mapping. In: Proc. of ICRA 2007 (2007)Google Scholar
  8. 8.
    Cummins, M., Newman, P.: FAB-MAP: Probabilistic localization and mapping in the space of appearance. International Journal of Robotics Research 27(6) (2008)Google Scholar
  9. 9.
    Torralba, A., Murphy, K.P., Freeman, W.T., Rubin, M.A.: Context-based vision system for place and object recognition. In: Proc. of ICCV 2003 (2003)Google Scholar
  10. 10.
    Pronobis, A., Caputo, B., Jensfelt, P., Christensen, H.I.: A discriminative approach to robust visual place recognition. In: Proc. of IROS 2006 (2006)Google Scholar
  11. 11.
    Wu, J., Rehg, J.M.: Where am I: Place instance and category recognition using spatial PACT. In: Proc. of CVPR 2008 (2008)Google Scholar
  12. 12.
    Weiss, C., Tamimi, H., Masselli, A., Zell, A.: A hybrid approach for vision-based outdoor robot localization using global and local image features. In: Proc. of IROS 2007 (2007)Google Scholar
  13. 13.
    Linde, O., Lindeberg, T.: Object recognition using composed receptive field histograms of higher dimensionality. In: Proc. of ICPR 2004 (2004)Google Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proc. of ICCV 2001 (2001)Google Scholar
  15. 15.
    Pronobis, A., Martínez Mozos, O., Caputo, B.: SVM-based discriminative accumulation scheme for place recognition. In: Proc. of ICRA 2008 (2008)Google Scholar
  16. 16.
    Nilsback, M.E., Caputo, B.: Cue integration through discriminative accumulation. In: Proc. of CVPR 2004 (2004)Google Scholar
  17. 17.
    Cristianini, N., Taylor, J.S.: An Introduction to SVMs and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)Google Scholar
  18. 18.
    Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogram-based image classification. IEEE Transactions on Neural Networks 10(5) (1999)Google Scholar
  19. 19.
    Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel recipe. In: Proc. of ICCV 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Li Xing
    • 1
  • Andrzej Pronobis
    • 1
  1. 1.Centre for Autonomous SystemsThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations