University of Glasgow at ImageCLEFPhoto 2009: Optimising Similarity and Diversity in Image Retrieval

  • Teerapong Leelanupab
  • Guido Zuccon
  • Anuj Goyal
  • Martin Halvey
  • P. Punitha
  • Joemon M. Jose
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6242)

Abstract

In this paper we describe the approaches adopted to generate the runs submitted to ImageCLEFPhoto 2009 with an aim to promote document diversity in the rankings. Four of our runs are text based approaches that employ textual statistics extracted from the captions of images, i.e. MMR [1] as a state of the art method for result diversification, two approaches that combine relevance information and clustering techniques, and an instantiation of Quantum Probability Ranking Principle. The fifth run exploits visual features of the provided images to re-rank the initial results by means of Factor Analysis. The results reveal that our methods based on only text captions consistently improve the performance of the respective baselines, while the approach that combines visual features with textual statistics shows lower levels of improvements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: SIGIR (1998)Google Scholar
  2. 2.
    Radlinski, F., Dumais, S.: Improving personalized web search using result diversification. In: SIGIR (2006)Google Scholar
  3. 3.
    Paramita, M.L., Sanderson, M., Clough, P.: Developing a test collection to support diversity analysis. In: SIGIR Red., Div., and Inter. Doc. Rel. Workshop (2009)Google Scholar
  4. 4.
    Deselaers, T., Gass, T., Dreuw, P., Ney, H.: Jointly optimising relevance and diversity in image retrieval. In: CIVR (2009)Google Scholar
  5. 5.
    Leelanupab, T., Hopfgartner, F., Jose, J.M.: User centred evaluation of a recommendation based image browsing system. In: IICAI (2009)Google Scholar
  6. 6.
    Urruty, T., Hopfgartner, F., Hannah, D., Elliott, D., Jose, J.M.: Supporting aspect-based video browsing - analysis of a user study. In: CIVR (2009)Google Scholar
  7. 7.
    Halvey, M., Punitha, P., Hannah, D., Villa, R., Hopfgartner, F., Goyal, A., Jose, J.M.: Diversity, assortment, dissimilarity, variety: A study of diversity measures using low level features for video retrieval. In: ECIR (2009)Google Scholar
  8. 8.
    Zuccon, G., Azzopardi, L., van Rijsbergen, C.: The quantum probability ranking principle. In: ICTIR (2009)Google Scholar
  9. 9.
    Zhai, C., Cohen, W.W., Lafferty, J.: Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In: SIGIR (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Teerapong Leelanupab
    • 1
  • Guido Zuccon
    • 1
  • Anuj Goyal
    • 1
  • Martin Halvey
    • 1
  • P. Punitha
    • 1
  • Joemon M. Jose
    • 1
  1. 1.University of GlasgowGlasgowUnited Kingdom

Personalised recommendations