Modelling Regional Climate Change in Germany

  • Peter Berg
  • Hans-Jürgen Panitz
  • Gerd Schädler
  • Hendrik Feldmann
  • Christoph Kottmeier

Abstract

A series of regional climate simulations using the regional climate model COSMO-CLM (CCLM) have been carried out at the Institute for Meteorology and Climate Research (IMK) of Karlsruhe Institute of Technology (KIT) (Panitz et al. 2010). These simulations span the years 1971–2000 to represent the climate of the recent past and the years 2011–2040 to analyse the climate change in Southwest Germany during the next few decades. A second set of simulations covering all of Germany, have been carried out for the CEDIM-project “Hochwassergefahr durch Klimawandel”, to assess possible changes in flood hazard in the near future. Model validation, results for changes in temperature and precipitation statistics, and statistics on the computational resources used at the HLRS facitilites are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panitz, H.-J., G. Schädler, and H. Feldmann (2010): Modelling Regional Climate Change in Southwest Germany, In: High Performance Computing in Science and Engineering ’09 [W.E. Nagel, D. Kröner, M. Resch (Eds.)]. ISBN 978-3-642-04664-3, Springer Berlin Heidelberg New York. Google Scholar
  2. 2.
    Nakicenovic, N. et al. (2000). Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm. Google Scholar
  3. 3.
    Doms, G. and U. Schättler (2002): A description of the nonhydrostatic regional model LM, Part I: Dynamics and Numerics. COSMO Newsletter, 2, 225–235. Google Scholar
  4. 4.
    Meissner, C. and G. Schädler (2007): Modelling the Regional Climate of Southwest Germany: Sensitivity to Simulation Setup. In: High Performance Computing in Science and Engineering ’07 [W.E. Nagel, D. Kröner, M. Resch (Eds.)]. ISBN 978-3-540-74738-3, Springer Berlin Heidelberg New York. Google Scholar
  5. 5.
    Meissner, C., G. Schädler, H.-J. Panitz, H. Feldmann, and Ch. Kottmeier (2009): High resolution sensitivity studies with the regional climate model COSMO-CLM. Meteoroligsche Zeitschrift, 18, 543–557, doi: 10.1127/0941-2948/20090400. CrossRefGoogle Scholar
  6. 6.
    Uppala, M., P.W. Kallberg, A.J. Simmons, U. Andrae, V. Da Costa Bechtold, M. Fiorino, J.K. Gibson, J. Haseler, A. Hernandez, G.A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R.P. Allan, E. Andersson, K. Arpe, M.A. Balmaseda, A.C.M. Beljaars, L. Van de Berg, J. Bildlot, N. Bormann, S. Caires, F. Chevallier, A. Dethof, M. Dragosavac, M. Fischer, M. Fuentes, S. Hagemann, E. Holm, B.J. Hoskins, L. Isaksen, P.A.E.M. Janssen, R. Jenne, A.P. McNally, J.-F. Mahfouf, J.-J. Morcrette, N.A. Rayner, R.W. Saunders, P. Simon, A. Sterl, K.E. Trenberth, A. Untch, D. Vasiljevic, P. Viterbo, and J. Woolen (2005): The ERA40 re-analysis, Q.J.R Meteorol. Soc., 131, 2961–3012. CrossRefGoogle Scholar
  7. 7.
    Röckner, E. (2005a): IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M_all run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. CERA-DB “EH5-T63L31_OM_20C3M_1_6H” http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EH5-T63L31_OM_20C3M_1_6H.
  8. 8.
    Röckner, E. (2005b): IPCC MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M_all run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. CERA-DB “EH5-T63L31_OM_20C3M_3_6H” http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=EH5-T63L31_OM_20C3M_1_6H.
  9. 9.
    Röckner, E., M. Lautenschlager, and H. Schneider (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_1_6H.
  10. 10.
    Röckner, E., M. Lautenschlager, and H. Schneider (2006c): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.2: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_2_6H.
  11. 11.
    Röckner, E., M. Lautenschlager, and H. Schneider (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 SRESA1B run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_A1B_3_6H.
  12. 12.
    Collins M., B.B.B. Booth, G.R. Harris, J.M. Murphy, D.M.H. Sexton, and M.J. Webb (2006): Towards quantifying uncertainty in transient climate change. Climate Dynamics, 27, 127–147, doi: 10.1007/s00382-006-0121-0. CrossRefGoogle Scholar
  13. 13.
    Röckner, E. (2006a): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.1: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_1_6H.
  14. 14.
    Röckner, E. (2006b): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.2: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_2_6H.
  15. 15.
    Röckner, E. (2006c): IPCC-AR4 MPI-ECHAM5_T63L31 MPI-OM_GR1.5L40 20C3M run no.3: atmosphere 6 HOUR values MPImet/MaD Germany. World Data Center for Climate. doi: 10.1594/WDCC/EH5-T63L31_OM-GR1.5L40_20C_3_6H.
  16. 16.
    Panitz, H.-J., G. Schädler, and H. Feldmann (2009): Modelling Regional Climate Change in Southwest Germany. Oral presentation, The 12th Results and Review Workshop of the HLRS, October 8–9, 2009, at the High Performance Computing Center Stuttgart. Google Scholar
  17. 17.
    KLIWA (2006): Langzeitverhalten der Starkniederschläge in Baden-Württemberg und Bayern. KLIWA-Projekt A 1.1.3 “Trenduntersuchungen extremer Niederschlagsereignisse in Baden-Württemberg und Bayern”. KLIWA-Berichte, Heft 8, Hrsg.: Arbeitskreis KLIWA, Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, Bayerisches Landesamt für Umwelt, Deutscher Wetterdienst, Juni 2006, 94 pp. ISBN 3-88148-412-4. Bezug ber: Deutscher Wetterdienst, Abteilung Hydrometeorologie, Postfach 100465, 64004 Offenbach. Google Scholar
  18. 18.
    Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, and M. New (2008): A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res., 113, D20119, doi: 10.1029/2008JD010201. CrossRefGoogle Scholar
  19. 19.
    Deutscher Wetterdienst (DWD), Germany (2008). Google Scholar
  20. 20.
    Deutscher Wetterdienst (DWD)/Potsdam-Institut für Klimafolgenforschung (PIK), Germany (2008): Meteorologischer Datensatz für Deutschland 1951–2006. Google Scholar
  21. 21.
    Yang, D., E. Elomaa, A. Tuominen, A. Aaltonen, B. Goodison, T. Gunther, V. Golubev, B. Sevruk, H. Madsen, and J. Milkovic (1999): Wind-induced precipitation undercatch of the Hellmann gauges. Nordic Hydrology, 30, 57–80. Google Scholar
  22. 22.
    BMU (2003): Hydrologischer Atlas von Deutschland, Freiburg, ISBN:3-00-005624-6. Google Scholar
  23. 23.
    McFarlane, N.A., J.F. Scinocca, M. Lazare, R. Harvey, D. Verseghy, and J. Li (2005): The CCCma third generation atmospheric general circulation model. CCCma Internal Rep., 25 pp. Google Scholar
  24. 24.
    Scinocca, J.F., N.A. McFarlane, M. Lazare, J. Li, and D. Plummer 2008: The CCCma third generation AGCM and its extension into the middle atmosphere. Atmos. Chem. and Phys., 8, 7055–7074. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Berg
    • 1
  • Hans-Jürgen Panitz
    • 1
  • Gerd Schädler
    • 1
  • Hendrik Feldmann
    • 1
  • Christoph Kottmeier
    • 1
  1. 1.Institut für Meteorologie und KlimaforschungKarlsruhe Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations